Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Environmental influences on Streptococcus sanguinis membrane vesicle biogenesis

Abstract

Membrane vesicles are produced by Gram-negative and Gram-positive bacteria. While membrane vesicles are potent elicitors of eukaryotic cells and involved in cell-cell communication, information is scarce about their general biology in the context of community members and the environment. Streptococcus sanguinis, a Gram-positive oral commensal, is prevalent in the oral cavity and well-characterized for its ability to antagonize oral pathobionts. We have found that production and dissemination of membrane vesicles by S. sanguinis is dependent on environmental and community factors. Co-culture with interacting commensal Corynebacterium durum, as well as with the periodontal pathobiont Filifactor alocis had no effect on S. sanguinis vesicle number and size, whereas the periodontal pathobiont Porphyromonas gingivalis abolished S. sanguinis vesicle production. Using both correlation and differential expression analyses to examine the transcriptomic changes underlying vesicle production, we found that differential expression of genes encoding proteins related to the cytoplasmic membrane and peptidoglycan correlate with the abundance of membrane vesicles. Proteomic characterizations of the vesicle cargo identified a variety of proteins, including those predicted to influence host interactions or host immune responses. Cell culture studies of gingival epithelial cells demonstrated that both crude and highly purified membrane vesicles could induce the expression of IL-8, TNF-α, IL-1β, and Gro-α within 6 hours of inoculation at levels comparable to whole cells. Our findings suggest that production of membrane vesicles by S. sanguinis is heavily influenced by community and environmental factors and plays an important role in communication with host cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: S. sanguinis produces membrane vesicles in a dual culture with C. durum in media supplemented with glucose.
Fig. 2: S. sanguinis vesicle production is varied in the presence of pathobionts F. alocis or P. gingivalis.
Fig. 3: Transcriptomic changes associated with MV number.
Fig. 4: Comparison of differential expression and correlation analysis.
Fig. 5: Proteomic characterization of S. sanguinis MVs.
Fig. 6: Functional associations of proteins predicted in S. sanguinis MV cargo.
Fig. 7: Inoculation of gingival epithelial cells with S. sanguinis membrane vesicles induced expression of cytokines.
Fig. 8: Gingival epithelial cell visualization and MV internalization.

Similar content being viewed by others

Data availability

All raw and normalized RNA sequence data and associated metadata are available on NCBI Gene Expression Omnibus (GEO), under accession GSE225861. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD041791.

References

  1. Caruana JC, Walper SA. Bacterial membrane vesicles as mediators of microbe – microbe and microbe – host community interactions. Front Microbiol. 2020;11:432.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Work E, Knox KW, Vesk M. The chemistry and electron microscopy of an extracellular lipopolysaccharide from Escherichia coli. Ann N. Y Acad Sci. 1966;133:438–49.

    Article  CAS  PubMed  Google Scholar 

  3. Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol. 2019;17:13–24.

    Article  CAS  PubMed  Google Scholar 

  4. Cecil JD, O’Brien-Simpson NM, Lenzo JC, Holden JA, Chen YY, Singleton W, et al. Differential responses of pattern recognition receptors to outer membrane vesicles of three periodontal pathogens. PLoS ONE. 2016;11:e0151967.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haurat MF, Aduse-Opoku J, Rangarajan M, Dorobantu L, Gray MR, Curtis MA, et al. Selective sorting of cargo proteins into bacterial membrane vesicles. J Biol Chem. 2011;286:1269–76.

    Article  CAS  PubMed  Google Scholar 

  6. Kim HY, Lim Y, An SJ, Choi BK. Characterization and immunostimulatory activity of extracellular vesicles from Filifactor alocis. Molecular Oral. Microbiology 2020;35:1–9.

    Google Scholar 

  7. Cecil JD, Sirisaengtaksin N, O’Brien-Simpson NM, Krachler AM. Outer membrane vesicle-host cell interactions. Microbiol Spectrum. 2019;7. https://doi.org/10.1128/microbiolspec.PSIB-0001-2018

  8. Farrugia C, Stafford GP, Murdoch C. Porphyromonas gingivalis outer membrane vesicles increase vascular permeability. J Dent Res. 2020;99:1494–501.

    Article  CAS  PubMed  Google Scholar 

  9. Treerat P, Redanz U, Redanz S, Giacaman RA, Merritt J, Kreth J. Synergism between Corynebacterium and Streptococcus sanguinis reveals new interactions between oral commensals. ISME J. 2020;14:1154–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roier S, Zingl FG, Cakar F, Durakovic S, Kohl P, Eichmann TO, et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat Commun. 2016;7:10515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee E-Y, Choi D-Y, Kim D-K, Kim J-W, Park JO, Kim S, et al. Gram-positive bacteria produce membrane vesicles: Proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics. 2009;9:5425–36. https://doi.org/10.1002/pmic.200900338

    Article  CAS  PubMed  Google Scholar 

  12. Díaz-Garrido N, Badia J, Baldomà L. Microbiota-derived extracellular vesicles in interkingdom communication in the gut. J Extracell Vesicles. 2021;10:e12161.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schlatterer K, Beck C, Hanzelmann D, Lebtig M, Fehrenbacher B, Schaller M, et al. The mechanism behind bacterial lipoprotein release: Phenol-soluble modulins mediate toll-like receptor 2 activation via extracellular vesicle release from Staphylococcus aureus. mBio 2018;9:1–13.

    Article  Google Scholar 

  14. Andreoni F, Toyofuku M, Menzi C, Kalawong R, Shambat SM, François P, et al. Antibiotics Stimulate Formation of Vesicles in Staphylococcus aureus in both Phage-Dependent and-Independent Fashions and via Different Routes. 2019. https://doi.org/10.1128/AAC

  15. Liu H, Zhang Q, Wang S, Weng W, Jing Y, Su J. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: Advances and perspectives. Bioactive Materials. 2022;14:169–81. https://doi.org/10.1016/j.bioactmat.2021.12.006

    Article  CAS  PubMed  Google Scholar 

  16. Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, Eisenstein F, Hsiao CC, Kurosawa M, et al. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nat Commun 2017;8:481.

    Article  PubMed Central  Google Scholar 

  17. Lee JH, Choi CW, Lee T, Kim SI, Lee JC, Shin JH. Transcription factor σB plays an important role in the production of extracellular membrane-derived vesicles in Listeria monocytogenes. PLoS ONE. 2013;8:e73196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Resch U, Tsatsaronis JA, Le Rhun A, Stübiger G, Rohde M, Kasvandik S, et al. A two-component regulatory system impacts extracellular membrane-derived vesicle production in group a streptococcus. mBio 2016;7:e00207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Welch JLM, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci USA. 2016;113:E791–800.

    Google Scholar 

  20. Kreth J, Zhang Y, Herzberg MC. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol. 2008;190:4632–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Redanz S, Treerat P, Mu R, Redanz U, Zou Z, Koley D, et al. Pyruvate secretion by oral streptococci modulates hydrogen peroxide dependent antagonism. ISME J. 2020;14:1074–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Redanz U, Redanz S, Treerat P, Prakasam S, Lin L-J, Merritt J, et al. Differential response of oral mucosal and gingival cells to Corynebacterium durum, Streptococcus sanguinis, and Porphyromonas gingivalis Multispecies Biofilms. Front Cell Infect Microbiol 2021;11:686479 https://doi.org/10.3389/fcimb.2021.686479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Callahan JE, Munro CL, Kitten T. The Streptococcus sanguinis competence regulon is not required for infective endocarditis virulence in a rabbit model. PLoS ONE. 2011;6:e26403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crump KE, Bainbridge B, Brusko S, Turner LS, Ge X, Stone V, et al. The relationship of the lipoprotein SsaB, manganese and superoxide dismutase in Streptococcus sanguinis virulence for endocarditis. Mol Microbiol. 2014;92:1243–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ge X, Kitten T, Chen Z, Lee SP, Munro CL, Xu P. Identification of Streptococcus sanguinis genes required for biofilm formation and examination of their role in endocarditis virulence. Infect Immun. 2008;76:2551–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martini AM, Moricz BS, Ripperger AK, Tran PM, Sharp ME, Forsythe AN, et al. Association of novel Streptococcus sanguinis virulence factors with pathogenesis in a native valve infective endocarditis model. Front Microbiol. 2020;11:10.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Van De Rijn I, Kessler RE. Growth characteristics of group a streptococci in a new chemically defined medium. Infection Immunity. 1980;27:444–8. https://journals.asm.org/journal/iai

    Article  PubMed  PubMed Central  Google Scholar 

  28. Standar K, Kreikemeyer B, Redanz S, Münter WL, Laue M, Podbielski A. Setup of an in vitro test system for basic studies on biofilm behavior of mixed-species cultures with dental and periodontal pathogens. PLoS ONE. 2010;5:e13135.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dos Santos KCG, Desgagné-Penix I, Germain H. Custom selected reference genes outperform pre-defined reference genes in transcriptomic analysis. BMC Genomics. 2020;21:35.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Darwiche R, Struhl K. Pheno-RNA, a method to associate genes with a specific phenotype, identifies genes linked to cellular transformation. Proc Natl Acad Sci USA. 2020;117:28925–9. www.pnas.org/cgi/doi/10.1073/pnas.2014165117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu J, Sun L, Liu W, Guo L, Liu Z, Wei X, et al. A nuclease from Streptococcus mutans facilitates biofilm dispersal and escape from killing by neutrophil extracellular traps. Front Cell Infect Microbiol 2017;7:97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rahman MM, Hunter HN, Prova S, Verma V, Qamar A, Golemi-Kotra D. The Staphylococcus aureus methicillin resistance factor FmtA is a D-amino esterase that acts on teichoic acids. mBio 2016;7:02070–15.

    Article  Google Scholar 

  33. Garg A, Gupta D. VirulentPred: A SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinforma. 2008;9:62.

    Article  Google Scholar 

  34. Jeffery CJ. Protein moonlighting: What is it, and why is it important? Philos Trans R Soc B: Biol Sci. 2018;373:20160523.

    Article  Google Scholar 

  35. C Chen, H Liu, S Zabad, N Rivera, E Rowin, M Hassan et al. MoonProt 3.0: an update of the moonlighting proteins database, Nucleic Acids Research, 49, 8 January 2021, D368-D372, https://doi.org/10.1093/nar/gkaa1101

  36. Papatheodorou I, Oellrich A, Smedley D. Linking gene expression to phenotypes via pathway information. J Biomed Semant. 2015;6:17.

    Article  Google Scholar 

  37. Balibar CJ, Shen X, Tao J. The mevalonate pathway of Staphylococcus aureus. J Bacteriol. 2009;191:851–61.

    Article  CAS  PubMed  Google Scholar 

  38. Matsumoto Y, Yasukawa J, Ishii M, Hayashi Y, Miyazaki S, Sekimizu K. A critical role of mevalonate for peptidoglycan synthesis in Staphylococcus aureus. Sci Rep. 2016;6:22894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mehanny M, Koch M, Lehr CM, Fuhrmann G. Streptococcal extracellular membrane vesicles are rapidly internalized by immune cells and alter their cytokine release. Front Immunol. 2020;11:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kent Brown C, Gu ZY, Matsuka YV, Purushothaman SS, Winter LA, Patrick Cleary P, et al. Structure of the streptococcal cell wall C5a peptidase. 2005. https://www.pnas.org

  41. Blue CE, Paterson GK, Kerr AR, Bergé M, Claverys JP, Mitchell TJ. ZmpB, a novel virulence factor of Streptococcus pneumoniae that induces tumor necrosis factor alpha production in the respiratory tract. Infect Immun. 2003;71:4925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jones MN, Holt RG. Cloning and characterization of an alpha-enolase of the oral pathogen Streptococcus mutans that binds human plasminogen. Biochem Biophys Res Commun. 2007;364:924–9. https://doi.org/10.1016/j.bbrc.2007.10.098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Candela M, Bergmann S, Vici M, Vitali B, Turroni S, Eikmanns BJ, et al. Binding of human plasminogen to Bifidobacterium. J Bacteriol. 2007;189:5929–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kinnby B, Booth NA, Svensäter G. Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions. Microbiology 2008;154:924–31.

    Article  CAS  PubMed  Google Scholar 

  45. Boone TJ, Burnham CAD, Tyrrell GJ. Binding of group B streptococcal phosphoglycerate kinase to plasminogen and actin. Microb Pathogenesis. 2011;51:255–61.

    Article  CAS  Google Scholar 

  46. Katakura Y, Sano R, Hashimoto T, Ninomiya K, Shioya S. Lactic acid bacteria display on the cell surface cytosolic proteins that recognize yeast mannan. Appl Microbiol Biotechnol. 2010;86:319–26.

    Article  CAS  PubMed  Google Scholar 

  47. Alkandari SA, Bhardwaj RG, Ellepola A, Karched M. Proteomics of extracellular vesicles produced by Granulicatella adiacens, which causes infective endocarditis. PLoSONE. 2020;15:e0227657 https://doi.org/10.1371/journal.pone.0227657

    Article  CAS  Google Scholar 

  48. Bickel M. The role of interleukin-8 in inflammation and mechanisms of regulation. J Periodontol. 1993;64:456–60.

    CAS  PubMed  Google Scholar 

  49. Lan C, Chen S, Jiang S, Lei H, Cai Z, Huang X, et al. Different expression patterns of inflammatory cytokines induced by lipopolysaccharides from Escherichia coli or Porphyromonas gingivalis in human dental pulp stem cells. BMC Oral Health. 2022;22:121 https://doi.org/10.1186/s12903-022-02161-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liew FY, Xu D, Brint EK, O’Neill LA. Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol. 2005;5:446–58.

    Article  CAS  PubMed  Google Scholar 

  51. Takashima K, Matsunaga N, Yoshimatsu M, Hazeki K, Kaisho T, Uekata M, et al. Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br J Pharm. 2009;157:1250–62.

    Article  CAS  Google Scholar 

  52. la Rosa GRM, Gattuso G, Pedullà E, Rapisarda E, Nicolosi D, Salmeri M. Association of oral dysbiosis with oral cancer development (Review). Oncol Lett. 2020;19:3045–58.

    PubMed  PubMed Central  Google Scholar 

  53. Shen X, Zhang B, Hu X, Li J, Wu M, Yan C, et al. Neisseria sicca and Corynebacterium matruchotii inhibited oral squamous cell carcinomas by regulating genome stability. Bioengineered 2022;13:14094–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yerneni SS, Werner S, Azambuja JH, Ludwig N, Eutsey R, Lucas PC, et al. Pneumococcal extracellular vesicles modulate host immunity. mBio 2021;12:0165721.

    Article  Google Scholar 

  55. Bik E, Long C, Armitage G, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010;4:962–74. https://doi.org/10.1038/ismej.2010.30

    Article  PubMed  Google Scholar 

  56. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28. https://doi.org/10.1038/nrm.2017.125

    Article  CAS  PubMed  Google Scholar 

  57. Moffatt-Jauregui CE, Robinson B, de Moya AV, Brockman RD, Roman AV, Cash MN, et al. Establishment and characterization of a telomerase immortalized human gingival epithelial cell line. J Periodontal Res. 2013;48:713–21.

    Article  CAS  PubMed  Google Scholar 

  58. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org

  60. Pohlert T (2022). _PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended_.

  61. MARTIN, Marcel. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, [S.l.], 17, 10-2, may 2011. ISSN 2226-6089. https://doi.org/10.14806/ej.17.1.200.

  62. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31:166–9.

    Article  CAS  PubMed  Google Scholar 

  64. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the following: OHSU Massive Parallel Sequencing Core (Robert Searles, Amy Carlos), OHSU Microscropy Facility (Claudia Lopez, Steven Adamou), OHSU Imaging Facility (Stefanie Kaech Petrie) and Oregon State University Proteomics Core Facility (Stanislau Stanisheuski). We are grateful to Özlem Yilmaz (Medical University of South Carolina) for sharing F. alocis, Richard J. Lamont (University of Louisville) for sharing P. gingivalis gingipain mutants, and Delaney Shea for assistance with nanoparticle tracking analysis. This work was supported by an NIH-NIDCR grant DE021726, DE029492 and DE029612 to JK and NIH-NIDCR grant DE028252 to J.M.

Author information

Authors and Affiliations

Authors

Contributions

E.H., J.M., and J.K .developed and designed the research. EH performed the experiments. E.H., D.C., and JK analyzed data. E.H. drafted the manuscript. E.H., D.C., J.M. and J.K. edited and revised the manuscript. All authors reviewed and approved the results and the revisions made to the manuscript.

Corresponding authors

Correspondence to Emily Helliwell or Jens Kreth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helliwell, E., Choi, D., Merritt, J. et al. Environmental influences on Streptococcus sanguinis membrane vesicle biogenesis. ISME J 17, 1430–1444 (2023). https://doi.org/10.1038/s41396-023-01456-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01456-3

Search

Quick links