Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Life strategies for Aminicenantia in subseafloor oceanic crust

Abstract

After decades studying the microbial “deep biosphere” in subseafloor oceanic crust, the growth and life strategies in this anoxic, low energy habitat remain poorly described. Using both single cell genomics and metagenomics, we reveal the life strategies of two distinct lineages of uncultivated Aminicenantia bacteria from the basaltic subseafloor oceanic crust of the eastern flank of the Juan de Fuca Ridge. Both lineages appear adapted to scavenge organic carbon, as each have genetic potential to catabolize amino acids and fatty acids, aligning with previous Aminicenantia reports. Given the organic carbon limitation in this habitat, seawater recharge and necromass may be important carbon sources for heterotrophic microorganisms inhabiting the ocean crust. Both lineages generate ATP via several mechanisms including substrate-level phosphorylation, anaerobic respiration, and electron bifurcation driving an Rnf ion translocation membrane complex. Genomic comparisons suggest these Aminicenantia transfer electrons extracellularly, perhaps to iron or sulfur oxides consistent with mineralogy of this site. One lineage, called JdFR-78, has small genomes that are basal to the Aminicenantia class and potentially use “primordial” siroheme biosynthetic intermediates for heme synthesis, suggesting this lineage retain characteristics of early evolved life. Lineage JdFR-78 contains CRISPR-Cas defenses to evade viruses, while other lineages contain prophage that may help prevent super-infection or no detectable viral defenses. Overall, genomic evidence points to Aminicenantia being well adapted to oceanic crust environments by taking advantage of simple organic molecules and extracellular electron transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aminicenantia 16S rRNA gene phylogenetic tree reveals two lineages living in the Juan de Fuca Ridge flank oceanic crust.
Fig. 2: Carbon utilization and energy generation metabolisms within the Juan de Fuca Aminicenantia.
Fig. 3: Comparison of CRISPR arrays in Juan de Fuca crustal fluid Aminicenantia.
Fig. 4: Genomic and phylogenomic properties of Aminicenantia order JdFR-78 indicate evolutionary differences.
Fig. 5: Life strategies for two lineages of Aminicenantia living in the warm and anoxic crustal fluids of the Juan de Fuca Ridge flank.

Similar content being viewed by others

Data availability

All SAG data for this project can be found on NCBI under BioProject ID PRJNA842252 under accession numbers: JAMZRZ000000000 (JDF1 composite genome); JAMZSA000000000 (AH-873-B07); JAMZSB000000000 (AC-708-M15); JAMZSC000000000 (AC-708-I09); JAMZSD000000000 (AC-335-O07); JAMZSE000000000 (AC-335-L06); JAMZSF000000000 (AC-335-K20); JAMZSG000000000 (AC-335-G13); JAMZSH000000000 (AC-335-B20); JAMZSI000000000 (AC-335-A11); JAMZSJ000000000 (AC-334-K16); JAMZSK000000000 (AC-334-E05). All MAG data for this project can be found on IMG.

References

  1. Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci USA. 2018;115:6506–11. https://doi.org/10.1073/pnas.1711842115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Orcutt BN, D’angelo T, Jungbluth SP, Huber JA, Sylvan JB. Microbial life in oceanic crust. 2020. https://doi.org/10.31219/osf.io/2wxe6.

  3. Edwards KJ, Fisher AT, Wheat CG. The deep subsurface biosphere in igneous ocean crust: frontier habitats for microbiological exploration. Front Microbiol. 2012;3:8. https://doi.org/10.3389/fmicb.2012.00008.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Orcutt BN, Edwards KJ. Life in the ocean crust: lessons from subseafloor laboratories. Dev Mar Geol. 2014;7:175–96. https://doi.org/10.1016/B978-0-444-62617-2.00007-4.

  5. Cowen JP, Giovannoni SJ, Kenig F, Johnson HP, Butterfield D, Rappé MS, et al. Fluids from aging ocean crust that support microbial life. Science. 2003;299:120–3. https://doi.org/10.1126/science.1075653.

    Article  CAS  PubMed  Google Scholar 

  6. Jungbluth SP, Bowers RM, Lin H-T, Cowen JP, Rappé MS. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt. ISME J. 2016;10:2033–47. https://doi.org/10.1038/ismej.2015.248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nigro OD, Jungbluth SP, Lin H, Hsieh C, Miranda JA, Schvarcz CR, et al. Viruses in the oceanic basement. mBio. 2017;8. https://doi.org/10.1128/mBio.02129-16.

  8. Carr SA, Jungbluth SP, Eloe-Fadrosh EA, Stepanauskas R, Woyke T, Rappé MS, et al. Carboxydotrophy potential of uncultivated hydrothermarchaeota from the subseafloor crustal biosphere. ISME J. 2019;13:1457–68. https://doi.org/10.1038/s41396-019-0352-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ivarsson M, Bengtson S, Neubeck A. The igneous oceanic crust—Earth’s largest fungal habitat? Fungal Ecol. 2016;20:249–55. https://doi.org/10.1016/j.funeco.2016.01.009.

    Article  Google Scholar 

  10. Smith AR, Mueller R, Fisk MR, Colwell FS. Ancient metabolisms of a thermophilic subseafloor bacterium. Front Microbiol. 2021;12:764631. https://doi.org/10.3389/fmicb.2021.764631.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Smith AR, Kieft B, Mueller R, Fisk MR, Mason OU, Popa R, et al. Carbon fixation and energy metabolisms of a subseafloor olivine biofilm. ISME J. 2019;13:1737–49. https://doi.org/10.1038/s41396-019-0385-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fisher AT, Davis EE, Hutnak M, Spiess V, Zühlsdorff L, Cherkaoui A, et al. Hydrothermal recharge and discharge across 50 km guided by seamounts on a young ridge flank. Nature. 2003;421:618–21. https://doi.org/10.1038/nature01352.

    Article  CAS  PubMed  Google Scholar 

  13. Orcutt BN, Bach W, Becker K, Fisher AT, Hentscher M, Toner BM, et al. Colonization of subsurface microbial observatories deployed in young ocean crust. ISME J. 2011;5:692–703. https://doi.org/10.1038/ismej.2010.157.

    Article  CAS  PubMed  Google Scholar 

  14. Fisher AT, Tsuji T, Petronotis K, Wheat CG, Becker K, Clark JF, et al. IODP expedition 327 and Atlantis expedition AT 18-07: observatories and experiments on the eastern flank of the Juan de Fuca Ridge. Sci Drill. 2012. https://doi.org/10.2204/iodp.sd.13.01.2011.

  15. Smith AR, Fisk MR, Thurber AR, Flores GE, Mason OU, Popa R, et al. Deep crustal communities of the Juan de Fuca Ridge are governed by mineralogy. Geomicrobiol J. 2017;34:147–56. https://doi.org/10.1080/01490451.2016.1155001.

    Article  CAS  Google Scholar 

  16. Jungbluth SP, Amend JP, Rappé MS. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids. Sci Data. 2017;4:170037. https://doi.org/10.1038/sdata.2017.37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramírez GA, Garber AI, Lecoeuvre A, D’Angelo T, Wheat CG, Orcutt BN. Ecology of subseafloor crustal biofilms. Front Microbiol. 2019;10:1983. https://doi.org/10.3389/fmicb.2019.01983.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Robador A, LaRowe DE, Jungbluth SP, Lin H-T, Rappé MS, Nealson KH, et al. Nanocalorimetric characterization of microbial activity in deep subsurface oceanic crustal fluids. Front Microbiol. 2016;7:454. https://doi.org/10.3389/fmicb.2016.00454.

    Article  PubMed  PubMed Central  Google Scholar 

  19. LaRowe DE, Koch BP, Robador A, Witt M, Ksionzek K, Amend JP. Identification of organic compounds in ocean basement fluids. Org Geochem. 2017;113:124–7. https://doi.org/10.1016/j.orggeochem.2017.07.017.

    Article  CAS  Google Scholar 

  20. Lu GS, LaRowe DE, Amend JP. Bioenergetic potentials in terrestrial, shallow-sea and deep-sea hydrothermal systems. Chem Geol. 2021;583:120449. https://doi.org/10.1016/j.chemgeo.2021.120449.

    Article  CAS  Google Scholar 

  21. Jungbluth SP, Grote J, Lin HT, Cowen JP, Rappé MS. Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank. ISME J. 2013;7:161–72. https://doi.org/10.1038/ismej.2012.73.

    Article  CAS  PubMed  Google Scholar 

  22. Castelle CJ, Banfield JF. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell. 2018;172:1181–97. https://doi.org/10.1016/j.cell.2018.02.016.

    Article  CAS  PubMed  Google Scholar 

  23. Farag IF, Davis JP, Youssef NH, Elshahed MS. Global patterns of abundance, diversity and community structure of the Aminicenantes (Candidate Phylum OP8). PLoS ONE. 2014;9:e92139. https://doi.org/10.1371/journal.pone.0092139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7. https://doi.org/10.1038/nature12352.

    Article  CAS  PubMed  Google Scholar 

  25. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2022;50:D785–94. https://doi.org/10.1093/nar/gkab776.

    Article  CAS  PubMed  Google Scholar 

  26. Oren A, Garrity GM. Valid publication of the names of forty-two phyla of prokaryotes. Int J Syst Evol Microbiol. 2021;71. https://doi.org/10.1099/ijsem.0.005056.

  27. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR. Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol. 1998;180:366–76. https://doi.org/10.1128/JB.180.2.366-376.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kadnikov VV, Mardanov AV, Beletsky AV, Karnachuk OV, Ravin NV. Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle. Extremophiles. 2019;23:189–200. https://doi.org/10.1007/s00792-018-01073-5.

    Article  CAS  PubMed  Google Scholar 

  29. Begmatov S, Savvichev AS, Kadnikov VV, Beletsky AV, Rusanov II, Klyuvitkin AA, et al. Microbial communities involved in methane, sulfur, and nitrogen cycling in the sediments of the barents sea. Microorganisms. 2021;9:2362. https://doi.org/10.3390/microorganisms9112362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Semler AC, Fortney JL, Fulweiler RW, Dekas AE. Cold seeps on the passive Northern U.S. Atlantic Margin host globally representative members of the seep microbiome with locally dominant strains of archaea. Appl Environ Microbiol. 2022;88:0046822. https://doi.org/10.1128/aem.00468-22.

    Article  CAS  Google Scholar 

  31. Robbins SJ, Evans PN, Parks DH, Golding SD, Tyson GW. Genome-centric analysis of microbial populations enriched by hydraulic fracture fluid additives in a coal bed methane production well. Front Microbiol. 2016;7:731. https://doi.org/10.3389/fmicb.2016.00731.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lin HT, Cowen JP, Olson EJ, Amend JP, Lilley MD. Inorganic chemistry, gas compositions and dissolved organic carbon in fluids from sedimented young basaltic crust on the Juan de Fuca Ridge flanks. Geochim Cosmochim Acta. 2012;85:213–27. https://doi.org/10.1016/j.gca.2012.02.017.

    Article  CAS  Google Scholar 

  33. Fisher AT, Wheat CG, Becker K, Cowen J, Orcutt B, Hulme S, et al. Design, deployment, and status of borehole observatory systems used for single-hole and cross-hole experiments, IODP Expedition 327, eastern flank of Juan de Fuca Ridge. Proc Integr Ocean Drill Progr. 2011. https://doi.org/10.2204/iodp.proc.327.107.2011.

    Article  Google Scholar 

  34. Fisher AT, Urabe T, Klaus A,and the Expedition 301 Scientists. Expedition 301 summary. Proc Integr Ocean Drill Progr. 2005. https://doi.org/10.2204/iodp.proc.301.101.2005.

    Article  Google Scholar 

  35. Wheat CG, Hulme SM, Fisher AT, Orcutt BN, Becker K. Seawater recharge into oceanic crust: IODP Exp 327 Site U1363 Grizzly Bare outcrop. Geochem Geophys Geosyst. 2013;14:1957–72. https://doi.org/10.1002/ggge.20131.

    Article  Google Scholar 

  36. Wheat CG, Jannasch HW, Kastner M, Hulme S, Cowen J, Edwards KJ, et al. Fluid sampling from oceanic borehole observatories: design and methods for CORK activities (1990-2010). Proc Integr Ocean Drill Progr. 2011. https://doi.org/10.2204/iodp.proc.327.109.2011.

    Article  Google Scholar 

  37. Clum A, Huntemann M, Bushnell B, Foster B, Foster B, Roux S, et al. DOE JGI metagenome workflow. mSystems. 2021;6. https://doi.org/10.1128/mSystems.00804-20.

  38. Stepanauskas R, Fergusson EA, Brown J, Poulton NJ, Tupper B, Labonté JM, et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat Commun. 2017;8:84. https://doi.org/10.1038/s41467-017-00128-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35. https://doi.org/10.1002/pro.3711.

    Article  CAS  PubMed  Google Scholar 

  40. Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36:2251–2. https://doi.org/10.1093/bioinformatics/btz859.

    Article  CAS  PubMed  Google Scholar 

  41. Graham ED, Heidelberg JF, Tully BJ. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 2018;12:1861–6. https://doi.org/10.1038/s41396-018-0091-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2012;40:W445–51. https://doi.org/10.1093/nar/gks479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. de Castro E, Sigrist CJA, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006;34:W362–5. https://doi.org/10.1093/nar/gkl124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krogh A, Larsson B, Von Heijne G, Sonnhammer E. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80. https://doi.org/10.1006/jmbi.2000.4315.

    Article  CAS  PubMed  Google Scholar 

  45. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. https://doi.org/10.1093/nar/gkh340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. https://doi.org/10.1093/bioinformatics/btu033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985. https://doi.org/10.7717/peerj.985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, et al. CRISPR Recognition Tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform. 2007;8:209. https://doi.org/10.1186/1471-2105-8-209.

    Article  CAS  Google Scholar 

  49. Padilha VA, Alkhnbashi OS, Shah SA, de Carvalho ACPLF, Backofen R. CRISPRcasIdentifier: machine learning for accurate identification and classification of CRISPR-Cas systems. Gigascience. 2020;9. https://doi.org/10.1093/gigascience/giaa062.

  50. Campbell JW, Morgan-Kiss RM, Cronan JE. A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic b-oxidation pathway. Mol Microbiol. 2003;47:793–805. https://doi.org/10.1046/j.1365-2958.2003.03341.x.

    Article  CAS  PubMed  Google Scholar 

  51. Sharon I, Kertesz M, Hug LA, Pushkarev D, Blauwkamp TA, Castelle CJ, et al. Accurate, multi-kb reads resolve complex populations and detect rare microorganisms. Genome Res. 2015;25:534–43. https://doi.org/10.1101/gr.183012.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin HT, Amend JP, LaRowe DE, Bingham JP, Cowen JP. Dissolved amino acids in oceanic basaltic basement fluids. Geochim Cosmochim Acta. 2015;164:175–90. https://doi.org/10.1016/j.gca.2015.04.044.

    Article  CAS  Google Scholar 

  53. Lomstein BA, Langerhuus AT, D’Hondt S, Jørgensen BB, Spivack AJ. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature. 2012;484:101–4. https://doi.org/10.1038/nature10905.

    Article  CAS  PubMed  Google Scholar 

  54. Robador A, Jungbluth SP, LaRowe DE, Bowers RM, Rappé MS, Amend JP, et al. Activity and phylogenetic diversity of sulfate-reducing microorganisms in low-temperature subsurface fluids within the upper oceanic crust. Front Microbiol. 2015;5:748. https://doi.org/10.3389/fmicb.2014.00748.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Boettger J, Lin HT, Cowen JP, Hentscher M, Amend JP. Energy yields from chemolithotrophic metabolisms in igneous basement of the Juan de Fuca ridge flank system. Chem Geol. 2013;337-338:11–19. https://doi.org/10.1016/j.chemgeo.2012.10.053.

    Article  CAS  Google Scholar 

  56. Lang SQ, Butterfield DA, Lilley MD, Paul Johnson H, Hedges JI. Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems. Geochim Cosmochim Acta. 2006;70:3830–42. https://doi.org/10.1016/j.gca.2006.04.031.

    Article  CAS  Google Scholar 

  57. Haveman SA, Holmes DE, Ding YHR, Ward JE, DiDonato RJ, Lovley DR. c-type cytochromes in Pelobacter carbinolicus. Appl Environ Microbiol. 2006;72:6980–5. https://doi.org/10.1128/AEM.01128-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Izumi H, Nunoura T, Miyazaki M, Mino S, Toki T, Takai K, et al. Thermotomaculum hydrothermale gen. nov., sp. nov., a novel heterotrophic thermophile within the phylum Acidobacteria from a deep-sea hydrothermal vent chimney in the Southern Okinawa Trough. Extremophiles. 2012;16:245–53. https://doi.org/10.1007/s00792-011-0425-9.

    Article  CAS  PubMed  Google Scholar 

  59. Fisher AT, Tsujii T, Petronotis K,Expedition 327 Scientists. Site U1362. Proc Integr Ocean Drill Progr. 2011. https://doi.org/10.2204/iodp.proc.327.103.2011.

    Article  Google Scholar 

  60. Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio. 2014;5:00889. https://doi.org/10.1128/mBio.00889-14.

    Article  Google Scholar 

  61. Chowdhury NP, Mowafy AM, Demmer JK, Upadhyay V, Koelzer S, Jayamani E, et al. Studies on the mechanism of electron bifurcation catalyzed by electron transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) of Acidaminococcus fermentans. J Biol Chem. 2014;289:5145–57. https://doi.org/10.1074/jbc.M113.521013.

    Article  CAS  PubMed  Google Scholar 

  62. Poudel S, Dunham EC, Lindsay MR, Amenabar MJ, Fones EM, Colman DR, et al. Origin and evolution of flavin-based electron bifurcating enzymes. Front Microbiol. 2018;9:1762. https://doi.org/10.3389/fmicb.2018.01762.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Charon M-H, Volbeda A, Chabriere E, Pieulle L, Fontecilla-Camps JC. Structure and electron transfer mechanism of pyruvate:ferredoxin oxidoreductase. Curr Opin Struct Biol. 1999;9:663–9. https://doi.org/10.1016/S0959-440X(99)00027-5.

    Article  CAS  PubMed  Google Scholar 

  64. Kuhns M, Trifunović D, Huber H, Müller V. The Rnf complex is a Na+ coupled respiratory enzyme in a fermenting bacterium, Thermotoga maritima. Commun Biol. 2020;3:431. https://doi.org/10.1038/s42003-020-01158-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stojanowic A, Mander GJ, Duin EC, Hedderich R. Physiological role of the F420-non-reducing hydrogenase (MvH) from Methanothermobacter marburgensis. Arch Microbiol. 2003;180:194–203. https://doi.org/10.1007/s00203-003-0577-9.

    Article  CAS  PubMed  Google Scholar 

  66. Søndergaard D, Pedersen CNS, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:34212. https://doi.org/10.1038/srep34212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yan Z, Wang M, Ferry JG. A ferredoxin- and F420H2-dependent, electron-bifurcating, heterodisulfide reductase with homologs in the domains Bacteria and Archaea. mBio. 2017;8. https://doi.org/10.1128/mBio.02285-16.

  68. Lin H-T, Cowen JP, Olson EJ, Lilley MD, Jungbluth SP, Wilson ST, et al. Dissolved hydrogen and methane in the oceanic basaltic biosphere. Earth Planet Sci Lett. 2014;405:62–73. https://doi.org/10.1016/j.epsl.2014.07.037.

    Article  CAS  Google Scholar 

  69. Gencic S, Grahame DA. Diverse energy-conserving pathways in Clostridium difficile: growth in the absence of amino acid stickland acceptors and the role of the Wood-Ljungdahl pathway. J Bacteriol. 2020;202. https://doi.org/10.1128/JB.00233-20.

  70. Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta. 2008;1784:1873–98. https://doi.org/10.1016/j.bbapap.2008.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wheat CG, Jannasch HW, Fisher AT, Becker K, Sharkey J, Hulme S. Subseafloor seawater-basalt-microbe reactions: continuous sampling of borehole fluids in a ridge flank environment. Geochem Geophys Geosyst. 2010;11. https://doi.org/10.1029/2010GC003057.

  72. Buckel W, Thauer RK. Flavin-based electron bifurcation, a new mechanism of biological energy coupling. Chem Rev. 2018;118:3862–86. https://doi.org/10.1021/acs.chemrev.7b00707.

    Article  CAS  PubMed  Google Scholar 

  73. Mulkidjanian AY, Galperin MY, Makarova KS, Wolf YI, Koonin EV. Evolutionary primacy of sodium bioenergetics. Biol Direct. 2008;3:13. https://doi.org/10.1186/1745-6150-3-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jungbluth SP, Glavina del Rio T, Tringe SG, Stepanauskas R, Rappé MS. Genomic comparisons of a bacterial lineage that inhabits both marine and terrestrial deep subsurface systems. PeerJ. 2017;5:e3134. https://doi.org/10.7717/peerj.3134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fincker M, Huber JA, Orphan VJ, Rappé MS, Teske A, Spormann AM. Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions. Environ Microbiol. 2020;22:3188–204. https://doi.org/10.1111/1462-2920.15061.

    Article  CAS  PubMed  Google Scholar 

  76. Bach W, Edwards KJ. Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta. 2003;67:3871–87. https://doi.org/10.1016/S0016-7037(03)00304-1.

    Article  CAS  Google Scholar 

  77. Kauffman KM, Chang WK, Brown JM, Hussain FA, Yang J, Polz MF, et al. Resolving the structure of phage–bacteria interactions in the context of natural diversity. Nat Commun. 2022;13:372. https://doi.org/10.1038/s41467-021-27583-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Anderson RE, Brazelton WJ, Baross JA. Using CRISPRs as ametagenomic tool to identify microbial hosts of a diffuse flow hydrothermal vent viral assemblage. FEMS Microbiol Ecol. 2011;77:120–33. https://doi.org/10.1111/j.1574-6941.2011.01090.x.

    Article  CAS  PubMed  Google Scholar 

  79. Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20. https://doi.org/10.1038/ismej.2017.16.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bondy-Denomy J, Qian J, Westra ER, Buckling A, Guttman DS, Davidson AR, et al. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 2016;10:2854–66. https://doi.org/10.1038/ismej.2016.79.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Deutschmann J, Gramberg T. SAMHD1… And viral ways around it. Viruses. 2021;13:395. https://doi.org/10.3390/v13030395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gronow S, Brade H. Lipopolysaccharide biosynthesis: which steps do bacteria need to survive. J Endotoxin Res. 2001;7:3–23. https://doi.org/10.1179/096805101101532468.

    Article  CAS  PubMed  Google Scholar 

  83. Weinberger AD, Wolf YI, Lobkovsky AE, Gilmore MS, Koonin EV. Viral diversity threshold for adaptive immunity in prokaryotes. mBio. 2012;3:00456–12. https://doi.org/10.1128/mBio.00456-12.

    Article  CAS  Google Scholar 

  84. McGinn J, Marraffini LA. Molecular mechanisms of CRISPR–Cas spacer acquisition. Nat Rev Microbiol. 2019;17:7–12. https://doi.org/10.1038/s41579-018-0071-7.

    Article  CAS  PubMed  Google Scholar 

  85. Pachiadaki MG, Brown JM, Brown J, Bezuidt O, Berube PM, Biller SJ, et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell. 2019;179:1623–35.e11. https://doi.org/10.1016/j.cell.2019.11.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9:467–77. https://doi.org/10.1038/nrmicro2577.

    Article  CAS  PubMed  Google Scholar 

  87. Hale CR, Cocozaki A, Li H, Terns RM, Terns MP. Target RNA capture and cleavage by the Cmr type III-B CRISPR–Cas effector complex. Genes Dev. 2014;28:2432–43. https://doi.org/10.1101/gad.250712.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Han W, Stella S, Zhang Y, Guo T, Sulek K, Peng-Lundgren L, et al. A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding. Nucleic Acids Res. 2018;46:10319–30. https://doi.org/10.1093/nar/gky844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Staals RHJ, Agari Y, Maki-Yonekura S, Zhu Y, Taylor DW, van Duijn E, et al. Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus. Mol Cell. 2013;52:135–45. https://doi.org/10.1016/j.molcel.2013.09.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang L, Mo CY, Wasserman MR, Rostøl JT, Marraffini LA, Liu S. Dynamics of Cas10 govern discrimination between self and non-self in Type III CRISPR-Cas immunity. Mol Cell. 2019;73:278–90.e4. https://doi.org/10.1016/j.molcel.2018.11.008.

    Article  CAS  PubMed  Google Scholar 

  91. Koonin EV, Wolf YI. Evolution of the CRISPR-Cas adaptive immunity systems in prokaryotes: models and observations on virus–host coevolution. Mol Biosyst. 2015;11:20–7. https://doi.org/10.1039/C4MB00438H.

    Article  CAS  PubMed  Google Scholar 

  92. Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O’Brian MR, et al. Prokaryotic heme biosynthesis: multiple pathways to a common essential product. Microbiol Mol Biol Rev. 2017;81. https://doi.org/10.1128/mmbr.00048-16.

  93. Murphy MJ, Siegel LM, Tove SR, Kamin H. Siroheme: a new prosthetic group participating in six-electron reduction reactions catalyzed by both sulfite and nitrite reductases. Proc Natl Acad Sci USA. 1974;71:612–6. https://doi.org/10.1073/pnas.71.3.612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xavier JC, Gerhards RE, Wimmer JLE, Brueckner J, Tria FDK, Martin WF. The metabolic network of the last bacterial common ancestor. Commun Biol. 2021;4:413. https://doi.org/10.1038/s42003-021-01918-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Giovannoni SJ, Thrash JC, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65. https://doi.org/10.1038/ismej.2014.60.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hubert C, Loy A, Nickel M, Arnosti C, Baranyi C, Brüchert V, et al. A constant flux of diverse thermophilic bacteria into the cold Arctic seabed. Science. 2009;325:1541–4. https://doi.org/10.1126/science.1174012.

    Article  CAS  PubMed  Google Scholar 

  97. Müller AL, de Rezende JR, Hubert CRJ, Kjeldsen KU, Lagkouvardos I, Berry D, et al. Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents. ISME J. 2014;8:1153–65. https://doi.org/10.1038/ismej.2013.225.

    Article  CAS  PubMed  Google Scholar 

  98. Walsh EA, Kirkpatrick JB, Rutherford SD, Smith DC, Sogin M, D’Hondt S. Bacterial diversity and community composition from seasurface to subseafloor. ISME J. 2016;10:979–89. https://doi.org/10.1038/ismej.2015.175.

    Article  PubMed  Google Scholar 

  99. Jørgensen SL, Zhao R. Microbial inventory of deeply buried oceanic crust from a young ridge flank. Front Microbiol. 2016;7:820. https://doi.org/10.3389/fmicb.2016.00820.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Labonté JM, Lever MA, Edwards KJ, Orcutt BN. Influence of igneous basement on deep sediment microbial diversity on the Eastern Juan de Fuca Ridge flank. Front Microbiol. 2017;8:1434. https://doi.org/10.3389/fmicb.2017.01434.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the science parties and crews of expeditions AT18-07, AT26-18 and AT42-11 for their support to collect the samples used in this study. We also thank Jennifer Gladstone, Anna Chen, Melody Lindsay and Julia McGonigle for discussions that helped shape the direction of this study, the staff of the Single Cell Genomics Center at the Bigelow Laboratory for Ocean Science and the Joint Genome Institute (JGI) for all sequencing, and Ruth Booker and Orion Thomas for extensive proof-reading. Samples from 2019 were collected with the consent of the Government of Canada, as reviewed by Global Affairs Canada.

Funding

Funding for the expeditions was provided by the U.S. National Science Foundation (awards OCE-1260723 to MSR, OCE-1260548 to C. Geoff Wheat, and OCE-1737017 to BNO). Funding for analyses was provided in part from the NSF (award OCE-173017 to BNO, OCE-1851582 to MSR, and OIA-1826734 to RS and BNO), from the NASA Exobiology program (80NSSC19K0466 to BNO), from the Center for Dark Energy Biosphere Investigation (C-DEBI; subaward from OCE-0939654 to BNO), and from the Rodney White Fellowship provided by Bigelow Laboratory for Ocean Sciences (to AEB and AAB). The work conducted by the US Department of Energy JGI, a US Department of Energy Office of Science User Facility, is supported under contract no. DE-AC02-05CH11231. This is HIMB contribution number 1933 and SOEST contribution number 11682.

Author information

Authors and Affiliations

Authors

Contributions

AEB, BNO, JMB, and TD conceived the project and designed the analyses. BNO, MSR, and RS secured funding. AEB, TD, AAB, JMB performed the analyses. All authors interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Beth N. Orcutt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Booker, A.E., D’Angelo, T., Adams-Beyea, A. et al. Life strategies for Aminicenantia in subseafloor oceanic crust. ISME J 17, 1406–1415 (2023). https://doi.org/10.1038/s41396-023-01454-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01454-5

Search

Quick links