Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plastic responses lead to increased neurotoxin production in the diatom Pseudo-nitzschia under ocean warming and acidification

Abstract

Ocean warming (OW) and acidification (OA) are recognized as two major climatic conditions influencing phytoplankton growth and nutritional or toxin content. However, there is limited knowledge on the responses of harmful algal bloom species that produce toxins. Here, the study provides quantitative and mechanistic understanding of the acclimation and adaptation responses of the domoic acid (DA) producing diatom Pseudo-nitzschia multiseries to rising temperature and pCO2 using both a one-year in situ bulk culture experiment, and an 800-day laboratory acclimation experiment. Ocean warming showed larger selective effects on growth and DA metabolism than ocean acidification. In a bulk culture experiment, increasing temperature +4 °C above ambient seawater temperature significantly increased DA concentration by up to 11-fold. In laboratory when the long-term warming acclimated samples were assayed under low temperatures, changes in growth rates and DA concentrations indicated that P. multiseries did not adapt to elevated temperature, but could instead rapidly and reversibly acclimate to temperature shifts. However, the warming-acclimated lines showed evidence of adaptation to elevated temperatures in the transcriptome data. Here the core gene expression was not reversed when warming-acclimated lines were moved back to the low temperature environment, which suggested that P. multiseries cells might adapt to rising temperature over longer timescales. The distinct strategies of phenotypic plasticity to rising temperature and pCO2 demonstrate a strong acclimation capacity for this bloom-forming toxic diatom in the future ocean.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth rates and DA concentrations of P. multiseries under six different temperature and pCO2 combinations in bulk culture experiments during summer and autumn.
Fig. 2: Growth rates and DA concentrations of P. multiseries laboratory cultures over 800 days of acclimation to nine different temperature and pCO2 combinations.
Fig. 3: Combined effects of ocean warming and ocean acidification on traits of P. multiseries after short-term or long-term acclimation.
Fig. 4: Growth rates and DA concentrations of P. multiseries in a shift experiment after long-term acclimation.
Fig. 5: Molecular understanding of altered DA biosynthetic potential of P. multiseries under different acclimation conditions.
Fig. 6: Relative expression of the core genes involed in the DA metabolic pathway of long-term acclimated P. multiseries in shift experiments.

Data availability

Transcriptome sequencing data are available at the National Center for Biotechnology Information (NCBI) with the accession number PRJNA686847.

References

  1. Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Myers SS, Smith MR, Guth S, Golden CD, Vaitla B, Mueller ND, et al. Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annu Rev Pub Health. 2017;38:259–77.

    Article  Google Scholar 

  3. Brown AR, Lilley M, Shutler J, Lowe C, Artioli Y, Torres R, et al. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev Aquac. 2020;12:1663–88.

    Google Scholar 

  4. Bates SS, Hubbard KA, Lundholm N, Montresor M, Leaw CP. Pseudo-nitzschia, Nitzschia, and domoic acid: New research since 2011. Harmful Algae. 2018;79:3–43.

    Article  PubMed  Google Scholar 

  5. Silver MW, Bargu S, Coale SL. Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic pacific. Proc Natl Acad Sci. 2010;107:20762–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Trick CG, Bill BD, Cochlan WP, Wells ML, Trainer VL, Pickell LD. Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proc Natl Acad Sci. 2010;107:5887–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hallegraeff G, Enevoldsen H, Zingone A. Global harmful algal bloom status reporting. Harmful Algae. 2021;102:101992.

    Article  PubMed  Google Scholar 

  8. McKibben SM, Peterson W, Wood AM, Trainer VL, Hunter M, White AE. Climatic regulation of the neurotoxin domoic acid. Proc Natl Acad Sci. 2017;114:239–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clark S, Hubbard KA, Ralston DK, McGillicuddy DJ, Stocke C, Alexander MA, et al. Projected effects of climate change on Pseudo-nitzschia bloom dynamics in the Gulf of Maine. J Mar Syst. 2022;230:103737.

    Article  PubMed  Google Scholar 

  10. Trainer VL, Kudela RM, Hunter MV, Adams NG, McCabe RM. Climate extreme seeds a new domoic ccid hotspot on the US West Coast. Front Clim. 2020;2:1–11.

    Article  Google Scholar 

  11. Hinder SL, Hays GC, Edwards M, Roberts EC, Walne AW, Gravenor MB. Changes in marine dinoflagellate and diatom abundance under climate change. Nat Clim Change. 2012;2:271–75.

    Article  Google Scholar 

  12. Sun J, Hutchins DA, Feng Y, Seubert EL, Caron DA, Fu FX. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries. Limnol Oceanogr. 2011;56:829–40.

    Article  CAS  Google Scholar 

  13. Zhu Z, Qu P, Fu F, Tennenbaum N, Tatters AO, Hutchins DA. Understanding the blob bloom: warming increases toxicity and abundance of the harmful bloom diatom Pseudo-nitzschia in California coastal waters. Harmful Algae. 2017;67:36–43.

    Article  CAS  PubMed  Google Scholar 

  14. Radan RL, Cochlan WP. Differential toxin response of Pseudo-nitzschia multiseries as a function of nitrogen speciation in batch and continuous cultures, and during a natural assemblage experiment. Harmful Algae. 2018;73:12–29.

    Article  CAS  PubMed  Google Scholar 

  15. Wingert CJ, Cochlan WP. Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Harmful Algae. 2021;107:102030.

    Article  CAS  PubMed  Google Scholar 

  16. Auro ME, Cochlan WP. Nitrogen utilization and toxin production by two diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidate and P. fryxelliana. J Phycol. 2013;49:156–69.

    Article  CAS  PubMed  Google Scholar 

  17. Lundholm N, Clarke A, Ellegaard M. A 100-year record of changing Pseudo-nitzschia species in a sill-fjord in Denmark related to nitrogen loading and temperature. Harmful Algae. 2010;9:449–57.

    Article  Google Scholar 

  18. Ryan JP, Kudela RM, Birch JM, Blum M, Bower HA, Chavez FP, et al. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 northeast Pacific warm anomaly. Geophys Res Lett. 2017;44:5571–79.

    Article  Google Scholar 

  19. McCabe RM, Hickey BM, Kudela RM, Lefebvre KA, Adams NG, Bill BD, et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys Res Lett. 2016;43:10,366–76.

    Article  Google Scholar 

  20. Tatters AO, Fu FX, Hutchins DA. High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS One. 2012;7:e32116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lundholm N, Hansen PJ, Kotaki Y. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia. Mar Ecol Prog Ser. 2004;273:1–15.

    Article  CAS  Google Scholar 

  22. Trimborn S, Lundholm N, Thoms S, Richter KW, Krock B, Hansen P, et al. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry. Physiol Plant. 2008;133:92–105.

    Article  CAS  PubMed  Google Scholar 

  23. Brunson JK, McKinnie SMK, Chekan JR, McCrow JP, Miles ZD, Bertrand EM, et al. Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom. Science. 2018;361:1356–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boissonneault KR, Henningsen BM, Bates SS, Robertson DL, Milton S, Pelletier J, et al. Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries. BMC Mole Biol. 2013;14:1–19.

    Google Scholar 

  25. Pierrot DE, Lewis E, Wallace DWR MS Excel program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of. Energy, Oak Ridge, TN. 2006; Retrieved from https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a.

  26. Brzezinski MA, Nelson DM. The annual silica cycle in the Sargasso Sea near Bermuda. Deep-Sea Res Pt I Oceanogr Res Papers. 1995;42:1215–37.

    Article  CAS  Google Scholar 

  27. Schlüter L, Lohbeck KT, Gutowska MA, Gröger JP, Riebesell U, Reusch TBH. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat Clim Change. 2014;4:1024–30.

    Article  Google Scholar 

  28. Schaum CE, Barton S, Bestion E, Buckling A, Garcia-Carreras B, Lopez P, et al. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat Ecol Evol. 2017;1:0094.

    Article  Google Scholar 

  29. Wang Z, Maucher-Fuquay J, Fire SE, Mikulski CM, Haynes B, Doucette GJ, et al. Optimization of solid-phase extraction and liquid chromatography–tandem mass spectrometry for the determination of domoic acid in seawater, phytoplankton, and mammalian fluids and tissues. Anal Chim Acta. 2012;715:71–9.

    Article  CAS  PubMed  Google Scholar 

  30. Brandenburg KM, Velthuis M, Van de Waal DB. Meta-analysis reveals enhanced growth of marine harmful algae from temperate regions with warming and elevated CO2 levels. Glob Change Biol. 2019;25:2607–18.

    Article  Google Scholar 

  31. Wohlrab S, John U, Klemm K, Rberlein T, Grivogiannis AMF, Krock B, et al. Ocean acidification increases domoic acid contents during a spring to summer succession of coastal phytoplankton. Harmful Algae. 2020;92:101697.

    Article  CAS  PubMed  Google Scholar 

  32. Zhong J, Guo Y, Liang Z, Huang Q, Lu H, Pan J, et al. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. Sci Total Environ. 2021;771:145167.

    Article  CAS  PubMed  Google Scholar 

  33. Trainer VL, Bates SS, Lundholm N, Thessen AE, Cochlan WP, Adams NG, et al. Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae. 2012;14:271–300.

    Article  Google Scholar 

  34. Zhu Z, Qu P, Gale J, Fu F, Hutchins DA. Individual and interactive effects of warming and CO2 on Pseudo-nitzschia subcurvata and Phaeocystis antarctica, two dominant phytoplankton from the Ross Sea, Antarctica. Biogeosciences. 2017;14:5281–95.

    Article  CAS  Google Scholar 

  35. Hutchins DA, Walworth NG, Webb EA, Saito MA, Moran D, McIlvin MR, et al. Irreversibly increased N2 fixation in Trichodesmium experimentally adapted to high CO2. Nat Commun. 2015;6:8155.

    Article  PubMed  Google Scholar 

  36. Walworth NG, Lee MD, Fu FX, Hutchins DA, Webb EA. Molecular and physiological evidence of genetic assimilation to high CO2 in the marine nitrogen fixer Trichodesmium. P Natl Acad Sci. 2016;113:E7367–74.

    Article  CAS  Google Scholar 

  37. Schaum CE, Buckling A, Smirnoff N, Studholme DJ, Yvon-Durocher G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat Commun. 2018;9:1719.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hutchins DA, Capone DG. The ocean nitrogen cycle: New developments and global change. Nat Rev Microbiol. 2022;20:401–14.

    Article  CAS  PubMed  Google Scholar 

  39. Xu D, Tong S, Wang B, Zhang X, Wang W, Zhang X, et al. Ocean acidification stimulation of phytoplankton growth depends on the extent of departure from the optimal growth temperature. Mar Pollut Bull. 2022;177:113510.

    Article  CAS  PubMed  Google Scholar 

  40. Hennon GMM, Sefbom J, Schaum E, Dyhrman ST, Godhe A Studying the acclimation and adaptation of HAB species to changing environmental conditions. In: Wells ML, et al. (eds.). GlobalHAB. 2021. Guidelines for the Study of Climate Change Effects on HABs. Paris: UNESCO-IOC/SCOR, 2021. pp 64–78.

  41. Collins S, Bell G. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature. 2004;431:566–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kremp A, Godhe A, Egardt J, Dupont S, Suikkanen S, Casabianca S, et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol Evol. 2012;2:1195–207.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tatters AO, Schnetzer A, Fu F, Lie AY, Caron DA, Hutchins DA. Short‐versus long‐term responses to changing CO2 in a coastal dinoflagellate bloom: Implications for interspecific competitive interactions and community structure. Evolution. 2013;67:1879–91.

    Article  PubMed  Google Scholar 

  44. Schaum CE, Collins S. Plasticity predicts evolution in a marine alga. P Roy Soc B-Biol Sci. 2014;281:20141486.

    Google Scholar 

  45. Moran XAG, Lopez-Urrutia Á, Calvo-Díaz A, Li WKW. Increasing importance of small phytoplankton in a warmer ocean. Glob Change Biol. 2010;16:1137–44.

    Article  Google Scholar 

  46. Thomas MK, Kremer CT, Klausmeier CA, Litchman EA. Global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–88.

    Article  CAS  PubMed  Google Scholar 

  47. Toseland ADSJ, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change. 2013;3:979–84.

    Article  CAS  Google Scholar 

  48. Collins S. Many Possible Worlds: Expanding the Ecological Scenarios in Experimental Evolution. Evol Biol. 2011;38:3–14.

    Article  Google Scholar 

  49. Qu PP, Fu F, Wang XW, Kling JD, Elghazzawy M, Huh M, et al. Two co‐dominant nitrogen‐fixing cyanobacteria demonstrate distinct acclimation and adaptation responses to cope with ocean warming. Env Microbiol Rep. 2022;14:203–17.

    Article  CAS  Google Scholar 

  50. Lande R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol. 2009;22:1435–46.

    Article  PubMed  Google Scholar 

  51. Draghi J, Whitlock MC. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 2012;66:2891–902.

    Article  PubMed  Google Scholar 

  52. Collins S, Rost B, Rynearson TA. Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl. 2014;7:140–55.

    Article  CAS  PubMed  Google Scholar 

  53. Kim H, Spivack AJ, Menden-Deuer S. pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: Implications for bloom formation in an acidified ocean. Harmful Algae. 2013;26:1–11.

    Article  CAS  Google Scholar 

  54. Hennon GMM, Quay P, Morales RL, Swanson LM, Armbrust EV. Acclimation conditions modify physiological response of the diatom Thalassiosira pseudonana to elevated CO2 concentrations in a nitrate-limited chemostat. J Phycol. 2014;50:243–53.

    Article  CAS  PubMed  Google Scholar 

  55. Daufresne M, Lengfellner K, Sommer U. Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci. 2009;106:12788–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Atkinson D, Ciotti BJ, Montagnes DJS. Protists decrease in size linearly with temperature: ca. 2.5% °C-1. Proc R Soc Lond B 2003;270:2605–11.

    Article  Google Scholar 

  57. Tong S, Gao K, Hutchins DA. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO2. Glob Chang Biol 2018;24:3055–64.

    Article  PubMed  Google Scholar 

  58. Kelly KJ, Fu FX, Jiang X, Li H, Xu D, Yang N, et al. Interactions between ultraviolet B radiation, warming, and changing nitrogen source may reduce the accumulation of toxic Pseudo-nitzschia multiseries biomass in future coastal oceans. Front Mar Sci. 2021;8:433.

    Article  Google Scholar 

  59. Sterner R, Elser, J Ecological stoichiometry. In: Levin SA, et al. (eds) The Princeton Guide to Ecology. Princeton Univ. Press, 2009. pp 376–85.

  60. Petrou K, Baker KG, Nielsen DA, Hancock AM, Schulz KG, Davidson AT. Acidification diminishes diatom silica production in the Southern Ocean. Nat Clim Change 2019;9:781–86.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No.2021QNLM050103-1), National Natural Science Foundation of China (41976110; 32072329; 32000404); the Young Taishan Scholars Program to DX, Taishan Scholars Funding; Central Public-interest Scientific Institution Basal Research Fund, CAFS (NO. 2020TD27, 20603022021019); Natural Science Foundation of Shandong Province (ZR2021MD075); Laoshan Laboratory (LSKJ202203204); China Agriculture Research System (CARS-50); U.S. California Urban Ocean Sea Grant and National Science Foundation grants (OCE 1638804, OCE 1538525, OCE 2149837, OCE 2120619).

Author information

Authors and Affiliations

Authors

Contributions

NY designed the project with contributions from DX. NY, DX, GCZ, ZW, TJ, KS, XF, CB, DAH, and ZJT analyzed the data. DX, NY, GB, ZW, and DAH wrote the manuscript; all authors contributed to editing the manuscript.

Corresponding authors

Correspondence to David A. Hutchins, Zhijun Tan or Naihao Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Zheng, G., Brennan, G. et al. Plastic responses lead to increased neurotoxin production in the diatom Pseudo-nitzschia under ocean warming and acidification. ISME J 17, 525–536 (2023). https://doi.org/10.1038/s41396-023-01370-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41396-023-01370-8

Search

Quick links