Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acquisition and evolution of enhanced mutualism—an underappreciated mechanism for invasive success?

Abstract

Soil biota can determine plant invasiveness, yet biogeographical comparisons of microbial community composition and function across ranges are rare. We compared interactions between Conyza canadensis, a global plant invader, and arbuscular mycorrhizal (AM) fungi in 17 plant populations in each native and non-native range spanning similar climate and soil fertility gradients. We then grew seedlings in the greenhouse inoculated with AM fungi from the native range. In the field, Conyza plants were larger, more fecund, and associated with a richer community of more closely related AM fungal taxa in the non-native range. Fungal taxa that were more abundant in the non-native range also correlated positively with plant biomass, whereas taxa that were more abundant in the native range appeared parasitic. These patterns persisted when populations from both ranges were grown together in a greenhouse; non-native populations cultured a richer and more diverse AM fungal community and selected AM fungi that appeared to be more mutualistic. Our results provide experimental support for evolution toward enhanced mutualism in non-native ranges. Such novel relationships and the rapid evolution of mutualisms may contribute to the disproportionate abundance and impact of some non-native plant species.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Geographical distribution and field performance of the studied Conyza populations.
Fig. 2: AM fungal communities associated with Conyza roots and rhizosphere in native and non-native populations in the field survey.
Fig. 3: Correlations between AM colonization, AM fungal taxa relative abundance, and Conyza field performance.
Fig. 4: AM fungal communities in rhizosphere soil of Conyza populations grown in the greenhouse.
Fig. 5: Correlations between AM colonization, AM fungal taxa, and Conyza greenhouse performance.

Data availability

Population means required to repeat analyses are available in the Supplementary Information for this paper.

References

  1. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ. 2001;84:1–20.

    Article  Google Scholar 

  2. Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, et al. High and rising economic costs of biological invasions worldwide. Nature. 2021;592:571–6.

    Article  CAS  Google Scholar 

  3. Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib. 2009;15:22–40.

    Article  Google Scholar 

  4. Pearson DE, Ortega YK, Eren Ö, Hierro JL. Community assembly theory as a framework for biological invasions. Trends Ecol Evol. 2018;33:313–25.

    PubMed  Article  Google Scholar 

  5. Inderjit, van der Putten WH. Impacts of soil microbial communities on exotic plant invasions. Trends Ecol Evol. 2010;25:512–9.

    PubMed  Article  CAS  Google Scholar 

  6. Keane RM, Crawley MJ. Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol. 2002;17:164–70.

    Article  Google Scholar 

  7. Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, et al. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 2006;4:e140.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Hierro JL, Callaway RM. Allelopathy and exotic plant invasion. Plant Soil. 2003;256:29–39.

    Article  CAS  Google Scholar 

  9. Reinhart KO, Callaway RM. Soil biota and invasive plants. N Phytol. 2006;170:445–57.

    Article  Google Scholar 

  10. Waller LP, Allen WJ, Barratt BIP, Condron LM, França FM, Hunt JE, et al. Biotic interactions drive ecosystem responses to exotic plant invaders. Science. 2020;368:967–72.

    PubMed  Article  CAS  Google Scholar 

  11. McLeod ML, Cleveland CC, Lekberg Y, Maron JL, Philippot L, Bru D, et al. Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grasslands. J Ecol. 2016;104:994–1002.

    Article  CAS  Google Scholar 

  12. Saul WC, Jeschke JM. Eco-evolutionary experience in novel species interactions. Ecol Lett. 2015;18:236–45.

    PubMed  Article  Google Scholar 

  13. Desprez-Loustau M, Robin C, Buee M, Courtecuisse R, Garbaye J, Suffert F, et al. The fungal dimension of biological invasions. Trends Ecol Evol. 2007;22:472–80.

    PubMed  Article  Google Scholar 

  14. Hierro JL, Maron JL, Callaway RM. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol. 2005;93:5–15.

    Article  Google Scholar 

  15. Callaway RM, Thelen GC, Rodriguez A, Holben WE. Soil biota and exotic plant invasion. Nature. 2004;427:731–3.

    PubMed  Article  CAS  Google Scholar 

  16. Maron JL, Klironomos J, Waller L, Callaway RM. Invasive plants escape from suppressive soil biota at regional scales. J Ecol. 2014;102:19–27.

    Article  Google Scholar 

  17. Brundrett MC. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil. 2009;320:37–77.

    Article  CAS  Google Scholar 

  18. Smith SE, Read DJ. Mycorrhizal symbiosis. London: Academic Press; 2008.

  19. O’Neill EG, O’Neill RV, Norby RJ. Hierarchy theory as a guide to mycorrhizal research on large-scale problems. Environ Pollut. 1991;73:271–84.

    PubMed  Article  Google Scholar 

  20. Johnson NC, Wilson GWTT, Wilson JA, Miller RM, Bowker MA. Mycorrhizal phenotypes and the Law of the Minimum. N Phytol. 2015;205:1473–84.

    Article  CAS  Google Scholar 

  21. Lekberg Y, Arnillas CA, Borer ET, Bullington LS, Fierer N, Kennedy PG, et al. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat Commun. 2021;12:3484.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Richardson DM, Allsopp N, D’Antonio CM, Milton S, Rejmanek M. Plant invasions - the role of mutualisms. Biol Rev. 2000;75:65–93.

    PubMed  Article  CAS  Google Scholar 

  23. Marler MJ, Zabinski CA, Callaway RM. Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology. 1999;80:1180–6.

    Article  Google Scholar 

  24. Soti PG, Jayachandran K, Purcell M, Volin JC, Kitajima K. Mycorrhizal symbiosis and Lygodium microphyllum invasion in South Florida—a biogeographic comparison. Symbiosis. 2014;62:81–90.

    Article  Google Scholar 

  25. Fumanal B, Plenchette C, Chauvel B, Bretagnolle F. Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycorrhiza. 2006;17:25–35.

    PubMed  Article  CAS  Google Scholar 

  26. Hart MM, Reader RJ. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. N Phytol. 2002;153:335–44.

    Article  Google Scholar 

  27. Maherali H, Klironomos JN. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science. 2007;316:1746–8.

    PubMed  Article  CAS  Google Scholar 

  28. Kivlin SN, Hawkes CV, Treseder KK. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem. 2011;43:2294–303.

    Article  CAS  Google Scholar 

  29. Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science. 2015;349:970–3.

    PubMed  Article  CAS  Google Scholar 

  30. Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA, Klironomos JN, et al. Biotic interactions and plant invasions. Ecol Lett. 2006;9:726–40.

    PubMed  Article  Google Scholar 

  31. Ehrenfeld JG. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems. 2003;6:503–23.

    Article  CAS  Google Scholar 

  32. Rout ME, Chrzanowski TH. The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant Soil. 2009;315:163–72.

    Article  CAS  Google Scholar 

  33. Sardans J, Bartrons M, Margalef O, Gargallo-Garriga A, Janssens IA, Ciais P, et al. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Glob Change Biol. 2017;23:1282–91.

    Article  Google Scholar 

  34. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia. 2005;144:1–11.

    PubMed  Article  Google Scholar 

  35. Lankau RA. Resistance and recovery of soil microbial communities in the face of Alliaria petiolata invasions. N Phytol. 2011;189:536–48.

    Article  Google Scholar 

  36. Blossey B, Nötzold R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J Ecol. 1995;83:887–9.

    Article  Google Scholar 

  37. van Kleunen M, Bossdorf O, Dawson W. The ecology and evolution of alien plants. Annu Rev Ecol Evol Syst. 2018;49:25–47.

    Article  Google Scholar 

  38. Rosche C, Hensen I, Schaar A, Zehra U, Jasieniuk M, Callaway RM, et al. Climate outweighs native vs. nonnative range‐effects for genetics and common garden performance of a cosmopolitan weed. Ecol Monogr. 2019;89:e01386.

    Article  Google Scholar 

  39. Weaver SE. The biology of Canadian weeds. 115. Conyza canadensis. Can J Plant Sci. 2001;81:867–75.

    Article  Google Scholar 

  40. Gange AC, Ayres RL. On the relation between arbuscular mycorrhizal colonization and plant ’ benefit. Oikos. 1999;87:615–21.

    Article  Google Scholar 

  41. Řezáčová V, Konvalinková T, Řezáč M. Decreased mycorrhizal colonization of Conyza canadensis (L.) Cronquist in invaded range does not affect fungal abundance in native plants. Biologia. 2020;75:693–9.

    Article  Google Scholar 

  42. Zhang Q, Sun Q, Koide RT, Peng Z, Zhou J, Gu X, et al. Arbuscular mycorrhizal fungal mediation of plant-plant onteractions in a marshland plant community. Sci World J. 2014;2014:1–10.

    Google Scholar 

  43. Zhang HY, Goncalves P, Copeland E, Qi SS, Dai ZC, Li GL, et al. Invasion by the weed Conyza canadensis alters soil nutrient supply and shifts microbiota structure. Soil Biol Biochem. 2020;143:107739.

    Article  CAS  Google Scholar 

  44. Shah MA, Callaway RM, Shah T, Houseman GR, Pal RW, Xiao S, et al. Conyza canadensis suppresses plant diversity in its nonnative ranges but not at home: a transcontinental comparison. N Phytol. 2014;202:1286–96.

    Article  Google Scholar 

  45. Colautti RI, Lau JA. Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol. 2015;24:1999–2017.

    PubMed  Article  Google Scholar 

  46. Rosche C, Hensen I, Lachmuth S. Local pre-adaptation to disturbance and inbreeding-environment interactions affect colonisation abilities of diploid and tetraploid Centaurea stoebe. Plant Biol. 2018;20:75–84.

    PubMed  Article  CAS  Google Scholar 

  47. Hart SC, Start JM, Davidson EA, Firestone MK. Nitrogen mineralization, immobilization, and nitrification. In: Weaver RW, Angle J., Bottomley P., editors. Methods of soil analysis, part 2 microbiological and biochemical properties. Madison, WI: Soil Science Society of America; 1994. p. 985–1018.

  48. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N. Working with mycorrhizas in forestry and agriculture. ACIAR Monogr. 1996;32:1–374.

    Google Scholar 

  49. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. N Phytol. 1990;115:495–501.

    Article  CAS  Google Scholar 

  50. Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;4315:4302–15.

    Article  Google Scholar 

  51. Hijmans RJ. raster: Geographic data analysis and modeling. R package version 3.3-13. 2020. https://cran.r-project.org/package=raster.

  52. R Core Team. R: A language and environment for statistical computing [https://www.r-project.org/]. Vienna, Austria: R Foundation for Statistical Computing; 2019.

  53. Oksanen J, Guillaume BF, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package. 2019. https://cran.r-project.org/package=vegan.

  54. Dumbrell AJ, Ashton PD, Aziz N, Feng G, Nelson M, Dytham C, et al. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. N Phytol. 2011;190:794–804.

    Article  CAS  Google Scholar 

  55. Lee J, Lee S, Young JPW. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol. 2008;65:339–49.

    PubMed  Article  CAS  Google Scholar 

  56. Bullington LS, Lekberg Y, Larkin BG. Insufficient sampling constrains our characterization of plant microbiomes. Sci Rep. 2021;11:3645.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). N Phytol. 2010;188:223–41.

    Article  CAS  Google Scholar 

  60. Chen J. GUniFrac: generalized UniFrac distances. R package version 1.1. 2018. https://cran.r-project.org/package=GUniFrac.

  61. Webb CO. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat. 2000;156:145–55.

    PubMed  Article  Google Scholar 

  62. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.

    PubMed  Article  CAS  Google Scholar 

  63. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. Price MN, Dehal PS, Arkin AP. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. Yu G, Smith DK, Zhu H, Guan Y, Lam TT. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36.

    Article  Google Scholar 

  66. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2014;67.

  67. Borcard D, Gillet F, Legendre P. Numerical ecology with R. New York: Springer; 2011.

  68. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57:289–300.

    Google Scholar 

  69. Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monogr. 2013;83:557–74.

    Article  Google Scholar 

  70. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. Felker-Quinn E, Schweitzer JA, Bailey JK. Meta-analysis reveals evolution in invasive plant species but little support for Evolution of Increased Competitive Ability (EICA). Ecol Evol. 2013;3:739–51.

    PubMed  PubMed Central  Article  Google Scholar 

  72. Pal RW, Maron JL, Nagy DU, Waller LP, Tosto A, Liao H, et al. What happens in Europe stays in Europe: apparent evolution by an invader does not help at home. Ecology 2020;101:e03072.

    PubMed  Article  Google Scholar 

  73. Matesanz S, Sultan SE. High-performance genotypes in an introduced plant: insights to future invasiveness. Ecology. 2013;94:2464–74.

    PubMed  Article  Google Scholar 

  74. Hart M, Reader R. Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol Fertil Soils. 2002;36:357–66.

    Article  Google Scholar 

  75. Yang H, Zhang Q, Koide RT, Hoeksema JD, Tang J, Bian X, et al. Taxonomic resolution is a determinant of biodiversity effects in arbuscular mycorrhizal fungal communities. J Ecol. 2017;105:219–28.

    Article  CAS  Google Scholar 

  76. Moora M, Berger S, Davison J, Öpik M, Bommarco R, Bruelheide H, et al. Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing. J Biogeogr. 2011;38:1305–17.

    Article  Google Scholar 

  77. Policelli N, Bruns TD, Vilgalys R, Nuñez MA. Suilloid fungi as global drivers of pine invasions. N Phytol. 2019;222:714–25.

    Article  Google Scholar 

  78. Jia Y, Heijden MGA, Wagg C, Feng G, Walder F. Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition. J Ecol. 2021;109:3171–81.

    Article  CAS  Google Scholar 

  79. Van Der Heijden MGAA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 1998;396:69–72.

    Article  CAS  Google Scholar 

  80. Zhang Q, Yang R, Tang J, Yang H, Hu S, Chen X. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS ONE. 2010;5:e12380.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. Shah MA, Reshi ZA, Khasa DP. Arbuscular mycorrhizas: drivers or passengers of alien plant invasion. Bot Rev. 2009;75:397–417.

    Article  Google Scholar 

  82. Valverde-Barrantes OJ, Horning AL, Smemo KA, Blackwood CB. Phylogenetically structured traits in root systems influence arbuscular mycorrhizal colonization in woody angiosperms. Plant Soil. 2016;404:1–12.

    Article  CAS  Google Scholar 

  83. Wilson GWT, Hartnett DC. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot. 1998;85:1732–8.

    PubMed  Article  CAS  Google Scholar 

  84. Seifert EK, Bever JD, Maron JL. Evidence for the evolution of reduced mycorrhizal dependence during plant invasion. Ecology 2009;90:1055–62.

    PubMed  Article  Google Scholar 

  85. Deveautour C, Donn S, Power SA, Bennett AE, Powell JR. Experimentally altered rainfall regimes and host root traits affect grassland arbuscular mycorrhizal fungal communities. Mol Ecol. 2018;27:2152–63.

    PubMed  Article  Google Scholar 

  86. Osborne OG, De-Kayne R, Bidartondo MI, Hutton I, Baker WJ, Turnbull CGN, et al. Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. N Phytol. 2018;217:1254–66.

    Article  CAS  Google Scholar 

  87. Tian B, Pei Y, Huang W, Ding J, Siemann E. Increasing flavonoid concentrations in root exudates enhance associations between arbuscular mycorrhizal fungi and an invasive plant. ISME J. 2021;15:1919–30.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. Pimprikar P, Gutjahr C. Transcriptional regulation of arbuscular mycorrhiza development. Plant Cell Physiol. 2018;59:673–90.

    PubMed  Article  CAS  Google Scholar 

  89. Wendlandt CE, Helliwell E, Roberts M, Nguyen KT, Friesen ML, Wettberg E, et al. Decreased coevolutionary potential and increased symbiont fecundity during the biological invasion of a legume‐rhizobium mutualism. Evolution. 2021;75:731–47.

    PubMed  Article  Google Scholar 

  90. Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J. Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology. 2011;92:1027–35.

    PubMed  Article  Google Scholar 

  91. Shelby N, Duncan RP, Putten WH, McGinn KJ, Weser C, Hulme PE. Plant mutualisms with rhizosphere microbiota in introduced versus native ranges. J Ecol. 2016;104:1259–70.

    Article  CAS  Google Scholar 

  92. Yang Q, Carrillo J, Jin H, Shang L, Hovick SM, Nijjer S, et al. Plant–soil biota interactions of an invasive species in its native and introduced ranges: Implications for invasion success. Soil Biol Biochem. 2013;65:78–85.

    Article  CAS  Google Scholar 

  93. Bronstein JL. The exploitation of mutualisms. Ecol Lett. 2001;4:277–87.

    Article  Google Scholar 

  94. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2.

    PubMed  Article  CAS  Google Scholar 

  95. Koziol L, Bever JD. Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. J Ecol. 2019;107:622–32.

    Article  Google Scholar 

  96. Yang H, Yuan Y, Zhang Q, Tang J, Liu Y, Chen X. Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena. 2011;87:70–7.

    Article  CAS  Google Scholar 

  97. Zhang J, Wang F, Che R, Wang P, Liu H, Ji B, et al. Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan alpine steppe. Sci Rep. 2016;6:23488.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. Read DJ. Mycorrhizas in ecosystems. Experientia. 1991;47:376–91.

    Article  Google Scholar 

  99. Delavaux CS, Smith-Ramesh LM, Kuebbing SE. Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology. 2017;98:2111–9.

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

YL, MM, and LSB are thankful to MPG Ranch for funding. MS is thankful to Shaanxi provincial special program for technological innovation (2020QFY10-01), Shaanxi Provincial Natural Science Foundation (2021JM-094) and China Scholarship Council for funding. CR was supported by a DAAD postdoctoral fellowship (91554701). RMC thanks the National Science Foundation EPSCoR Track-1 Cooperative Agreement (OIA-1757351) for support. MAS acknowledges the support from the RUSA 2.0 Project by MHRD Govt. of India and DK acknowledges the support of a Discovery Grant (from NSERC). The authors thank Kelly LaFlamme for help with greenhouse maintenance, harvest, and sample processing, and Martine Lapointe and Marie-Eve Beaulieu (Université Laval) for collecting plant material and field data in Canada.

Author information

Authors and Affiliations

Authors

Contributions

MS, CR, and YL conceived the idea of the study and all co-authors provided input on the design. MS and CR conducted all statistical analyses with input from YL and LB. YL, MS, and CR wrote the first draft. All co-authors were involved in either sampling or sample processing and provided edits to earlier drafts.

Corresponding author

Correspondence to Ylva Lekberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sheng, M., Rosche, C., Al-Gharaibeh, M. et al. Acquisition and evolution of enhanced mutualism—an underappreciated mechanism for invasive success?. ISME J (2022). https://doi.org/10.1038/s41396-022-01293-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41396-022-01293-w

Search

Quick links