Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress

Abstract

Salinity is a major abiotic stress threatening crop production. Root-derived bacteria (RDB) are hypothesized to play a role in enhancing plant adaptability to various stresses. However, it is still unclear whether and how plants build up specific RDB when challenged by salinity. In this study, we measured the composition and variation in the rhizosphere and endophyte bacteria of salt-sensitive (SSs) and salt-resistant (SRs) plants under soil conditions with/without salinity. The salt-induced RDB (both rhizobiomes and endophytes) were isolated to examine their effects on the physiological responses of SSs and SRs to salinity challenge. Moreover, we examined whether functional redundancy exists among salt-induced RDB in enhancing plant adaptability to salt stress. We observed that although SSs and SRs recruited distinct RDB and relevant functions when challenged by salinity, salt-induced recruitment of specific RDB led to a consistent growth promotion in plants regardless of their salinity tolerance capacities. Plants employed a species-specific strategy to recruit beneficial soil bacteria in the rhizosphere rather than in the endosphere. Furthermore, we demonstrated that the consortium, but not individual members of the salt-induced RDB, provided enduring resistance against salt stress. This study confirms the critical role of salt-induced RDB in enhancing plant adaptability to salt stress.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Characteristics of bacterial and fungal communities in the forest soil, compost, and compost-amended soil.
Fig. 2: Efficiency of soil microbial communities in alleviating plant salt stress.
Fig. 3: Specific root-associated bacteria recruited by plants when challenged by salinity.
Fig. 4: Metabolic and ecological functions of root-associated bacteria.
Fig. 5: Plant salt adaptation as affected by salt-induced bacterial consortium associated with roots.
Fig. 6: Comparison of the effectiveness of self and non-self bacterial consortiums in enhancing plant salt adaptation.
Fig. 7: Synergistic regulation of plant salt adaptation by salt-induced bacterial consortium.

Data availability

All raw amplicon reads can be found in the NCBI database and the SRA accession numbers SRP267882, SRP268035, SRP268033, SRP268020, and SRP295317.

References

  1. 1.

    Julkowska MM, Testerink C. Tuning plant signaling and growth to survive salt. Trends Plant Sci. 2015;20:586–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Li H, Zhao Q, Huang H. Current states and challenges of salt-affected soil remediation by cyanobacteria. Sci Total Environ. 2019;669:258–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    FAO. Extent of salt-affected soils. 2020. http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/. Accessed 14 June 2020.

  4. 4.

    Jamil A, Riaz S, Ashraf M, Foolad MR. Gene expression profiling of plants under salt stress. Crit Rev Plant Sci. 2011;30:435–58.

    Article  Google Scholar 

  5. 5.

    Ouhibi C, Attia H, Rebah F, Msilini N, Chebbi M, Aarrouf J, et al. Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiol Biochem. 2014;83:126–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    McFarlane DJ, George RJ, Barrett-Lennard EG, Gilfedder M. Salinity in dryland agricultural systems: challenges and opportunities. In: Farooq M, Siddique KHM, editors. Innovations in dryland agriculture. 1st ed. Switzerland: Springer Nature; 2016. p. 521–47.

    Google Scholar 

  7. 7.

    Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. N. Phytol. 2018;217:523–39.

    CAS  Article  Google Scholar 

  8. 8.

    Zörb C, Geilfus CM, Dietz KJ. Salinity and crop yield. Plant Biol. 2019;21:31–38.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  9. 9.

    Flood PJ, Hancock AM. The genomic basis of adaptation in plants. Curr Opin Plant Biol. 2017;36:88–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Yuan F, Leng B, Wang B. Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt? Front Plant Sci. 2016;7:977.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Yang Y, Guo Y. Unraveling salt stress signaling in plants. J Integr Plant Biol. 2018;60:796–804.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Kazan K, Lyons R. The link between flowering time and stress tolerance. J Exp Bot. 2015;67:47–60.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. 13.

    Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167:313–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Lowry DB, Hall MC, Salt DE, Willis JH. Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland Mimulus guttatus. N. Phytol. 2009;183:776–88.

    Article  Google Scholar 

  15. 15.

    Ilangumaran G, Smith DL. Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci. 2017;8:1768.

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems biology of plant microbiome interactions. Mol Plant. 2019;12:804–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci. 2018;9:112.

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.

    PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol. 2018;36:1100–9.

    CAS  Article  Google Scholar 

  21. 21.

    Jha B, Gontia I, Hartmann A. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil. 2012;356:265–77.

    CAS  Article  Google Scholar 

  22. 22.

    Qin S, Zhang YJ, Yuan B, Xu PY, Xing K, Wang J, et al. Isolation of ACC deaminase-produ0cing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil. 2014;374:753–66.

    CAS  Article  Google Scholar 

  23. 23.

    Soldan R, Mapelli F, Crotti E, Schnell S, Daffonchio D, Marasco R, et al. Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol Res. 2019;223:33–43.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  24. 24.

    Bal HB, Nayak L, Das S, Adhya TK. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil. 2013;366:93–105.

    CAS  Article  Google Scholar 

  25. 25.

    Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep. 2016;6:34768.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Dong ZY, Rao MPN, Wang HF, Fang BZ, Liu YH, Li L, et al. Transcriptomic analysis of two endophytes involved in enhancing salt stress ability of Arabidopsis thaliana. Sci Total Environ. 2019;686:107–17.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Yaish MW, Al-Lawati A, Jana GA, Patankar HV, Glick BR. Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One. 2016;11:e0159007.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  28. 28.

    Yang H, Hu J, Long X, Liu Z, Rengel Z. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke. Sci Rep. 2016;6:20687.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Thiem D, Gołębiewski M, Hulisz P, Piernik A, Hrynkiewicz K. How does salinity shape bacterial and fungal microbiomes of Alnus glutinosa roots? Front Microbiol. 2018;9:651.

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Paul D, Lade H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev. 2014;34:737–52.

    Article  Google Scholar 

  31. 31.

    Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006;57:233–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Badri DV, Vivanco JM. Regulation and function of root exudates. Plant Cell Environ. 2009;32:666–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Philippot L, Spor A, Hénault C, Bru D, Bizouard F, Jones CM, et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 2013;7:1609–19.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Niu B, Paulson JN, Zheng X, Kolter R. Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci USA. 2017;114:E2450–9.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Vargas R, Pankova E, Balyuk A, Krasilnikov P, Khasankhanova G, editors. Handbook for saline soil management. Food and Agriculture Organization of the United Nations and Lomonosov Moscow State University, Rome, Italy, 2018, pp 8–11.

  37. 37.

    McNamara NP, Black HIJ, Beresford NA, Parekh NR. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl Soil Ecol. 2003;24:117–32.

    Article  Google Scholar 

  38. 38.

    Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–9.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science. 2019;366:606–12.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  40. 40.

    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Zhang J, Liu YX, Zhang N, Hu B, Jin T, Xu H, et al. NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37:676–84.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinforma (Oxf, Engl). 2018;34:2371–5.

    CAS  Article  Google Scholar 

  45. 45.

    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 2010;26:266–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA. 2013;110:6548–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Javůrková VG, Kreisinger J, Procházka P, Požgayová M, Ševčíková K, Brlík V, et al. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. ISME J. 2019;13:2363–76.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  51. 51.

    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Community ecology package. R package version 2.5-6. https://cran.r-project.org. Accessed 1 Sep 2019.

  52. 52.

    Cáceres MD, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.

    PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Santhanam R, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA. 2015;112:E5013–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Dudenhöffer J-H, Scheu S, Jousset A. Systemic enrichment of antifungal traits in the rhizosphere microbiome after pathogen attack. J Ecol. 2016;104:1566–75.

    Article  CAS  Google Scholar 

  56. 56.

    Kong HG, Kim BK, Song GC, Lee S, Ryu C-M. Aboveground whitefly infestation-mediated reshaping of the root microbiota. Front Microbiol. 2016;7:1314.

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Pieterse CM, de Jonge R, Berendsen RL. The soil-borne supremacy. Trends Plant Sci. 2016;21:171–3.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Lämke J, Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017;18:124.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  61. 61.

    Cominelli E, Conti L, Tonelli C, Galbiati M. Challenges and perspectives to improve crop drought and salinity tolerance. N. Biotechnol. 2013;30:355–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, et al. Stress tolerance in plants via habitat adapted symbiosis. ISME J. 2008;2:404–16.

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Hamilton EW III, Frank DA. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology. 2001;82:2397–402.

    Article  Google Scholar 

  64. 64.

    Cipollini D, Rigsby CM, Barto EK. Microbes as targets and mediators of allelopathy in plants. J Chem Ecol. 2012;38:714–27.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Ahmed V, Verma MK, Gupta S, Mandhan V, Chauhan NS. Metagenomic profiling of soil microbes to mine salt stress tolerance genes. Front Microbiol. 2018;9:159.

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Troost TA, Kooi BW, Kooijman SALM. When do mixotrophs specialize? Adaptive dynamics theory applied to a dynamic energy budget model. Math Biosci. 2005;193:159–82.

    PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Venceslau SS, Lino RR, Pereira IA. The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. J Biol Chem. 2010;285:22774–83.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res. 2018;209:21–32.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Kumar M, Etesami H, Kumar V, editors. Saline soil-based agriculture by halotolerant microorganisms. Singapore: Springer Nature Singapore Pte Ltd; 2019.

    Google Scholar 

  70. 70.

    Etesami H, Glick BR. Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environ Exp Bot. 2020;23:104124.

    Article  CAS  Google Scholar 

  71. 71.

    van der Heijden MG, Schlaeppi K. Root surface as a frontier for plant microbiome research. Proc Natl Acad Sci USA. 2015;112:2299–300.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  72. 72.

    Bakhshandeh E, Gholamhosseini M, Yaghoubian Y, Pirdashti H. Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regul. 2020;90:123–36.

    CAS  Article  Google Scholar 

  73. 73.

    Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    van Elsas JD, Chiurazzi M, Mallon CA, Elhottovā D, Krištůfek V, Salles JF. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA. 2012;109:1159–64.

    PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Matos A, Kerkhof L, Garland JL. Effects of microbial community diversity on the survival of Pseudomonas aeruginosa in the wheat rhizosphere. Micro Ecol. 2005;49:257–64.

    CAS  Article  Google Scholar 

  77. 77.

    Hol WHG, de Boer W, Termorshuizen AJ, Meyer KM, Schneider JHM, et al. Reduction of rare soil microbes modifies plant–herbivore interactions. Ecol Lett. 2010;13:292–301.

    PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Saleem M, Hu J, Jousset A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst. 2019;50:145–68.

    Article  Google Scholar 

  79. 79.

    Fan P, Chen D, He Y, Zhou Q, Tian Y, Gao L. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline–alkaline lands. Int J Phytoremediat. 2016;18:1113–21.

    CAS  Article  Google Scholar 

  80. 80.

    Misra S, Dixit VK, Mishra SK, Chauhan PS. Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration. Ann Microbiol. 2019;69:419–34.

    CAS  Article  Google Scholar 

  81. 81.

    Gest H. The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, fellows of the Royal Society. Notes Rec R Soc Lond. 2004;58:187–201.

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Project 31772358), the National Key Research and Development Program of China (2019YFD1001903), the China Agriculture Research System (CARS-23), and the Key Research and Development Program of Ningxia (2019BBF02012-02).

Author information

Affiliations

Authors

Contributions

HL, LG, and YT developed the study concept and experimental design. LG and YT supervised the project. HL, SL, and XZ performed laboratory work. HL, SL, and XZ collected the samples. HL and YT conducted data analysis. HL and YT wrote and revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Lihong Gao or Yongqiang Tian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., La, S., Zhang, X. et al. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress. ISME J (2021). https://doi.org/10.1038/s41396-021-00974-2

Download citation

Search

Quick links