Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gulf of Mexico blue hole harbors high levels of novel microbial lineages

Abstract

Exploration of oxygen-depleted marine environments has consistently revealed novel microbial taxa and metabolic capabilities that expand our understanding of microbial evolution and ecology. Marine blue holes are shallow karst formations characterized by low oxygen and high organic matter content. They are logistically challenging to sample, and thus our understanding of their biogeochemistry and microbial ecology is limited. We present a metagenomic and geochemical characterization of Amberjack Hole on the Florida continental shelf (Gulf of Mexico). Dissolved oxygen became depleted at the hole’s rim (32 m water depth), remained low but detectable in an intermediate hypoxic zone (40–75 m), and then increased to a secondary peak before falling below detection in the bottom layer (80–110 m), concomitant with increases in nutrients, dissolved iron, and a series of sequentially more reduced sulfur species. Microbial communities in the bottom layer contained heretofore undocumented levels of the recently discovered phylum Woesearchaeota (up to 58% of the community), along with lineages in the bacterial Candidate Phyla Radiation (CPR). Thirty-one high-quality metagenome-assembled genomes (MAGs) showed extensive biochemical capabilities for sulfur and nitrogen cycling, as well as for resisting and respiring arsenic. One uncharacterized gene associated with a CPR lineage differentiated hypoxic from anoxic zone communities. Overall, microbial communities and geochemical profiles were stable across two sampling dates in the spring and fall of 2019. The blue hole habitat is a natural marine laboratory that provides opportunities for sampling taxa with under-characterized but potentially important roles in redox-stratified microbial processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: A conceptual diagram of the Amberjack blue hole showing the approximate water column layers as determined by physical and chemical stratification.
Fig. 2: The blue hole water column in September 2019 was highly stratified, with physical and chemical differences starting at the rim (at 32 m, indicated by a dashed line).
Fig. 3: Microbial communities represented three water column depth groupings: shallow (0–32 m), middle (40–70 m), and deep (80–95 m).
Fig. 4: Depth profiles of microbial taxa relative abundances in the Amberjack water column.
Fig. 5: Phylogenomic analysis of the Woesearchaeotal MAG and ninety publicly available MAGs from a range of biomes show the AJ population is most closely related to Woesearchaeota from other marine water columns, including a low oxygen water mass in the Arabian Sea.
Fig. 6: A comparison of gene content in each of the twelve MAGs recovered from the deep metagenomes shows three MAGs (BH21, BH22, and BH28) have a higher fraction of genes belonging to “Genetic Information Processing” than “Metabolism,” which is the opposite pattern of all other MAGs.
Fig. 7: Heat map of gene relative abundances in each of the four metagenomes.

Code availability

Python scripts used for calculating gene relative abundances, comparing these abundances across metagenomes, and calculating and comparing gene content in MAGs are available in the corresponding author’s GitHub repository: https://github.com/nvpatin/BlueHole_manuscript.

References

  1. 1.

    Saunders JK, Fuchsman CA, McKay C, Rocap G. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc Natl Acad Sci USA. 2019;116:9925–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Callbeck CM, Lavik G, Ferdelman TG, Fuchs B, Gruber-Vodicka HR, Hach PF, et al. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nat Commun. 2018;9:1729.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. 3.

    Garcia-Robledo E, Padilla CC, Aldunate M, Stewart FJ, Ulloa O, Paulmier A, et al. Cryptic oxygen cycling in anoxic marine zones. Proc Natl Acad Sci USA. 2017;114:8319–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Sun X, Kop LFM, Lau MCY, Frank J, Jayakumar A, Lücker S, et al. Uncultured Nitrospina-like species are major nitrite oxidizing bacteria in oxygen minimum zones. ISME J. 2019;13:2391–402.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez-R LM, Burns AS, et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature. 2016;536:179–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Thamdrup B, Steinsdóttir HGR, Bertagnolli AD, Padilla CC, Patin NV, Garcia-Robledo E, et al. Anaerobic methane oxidation is an important sink for methane in the ocean’s largest oxygen minimum zone. Limnol Oceanogr. 2019;64:2569–85.

    CAS  Article  Google Scholar 

  7. 7.

    Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Conley DJ, et al. Declining oxygen in the global ocean and coastal waters. Science. 2018;359:eaam7240.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. 8.

    Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature. 2015;523:208–U173.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol. 2015;25:690–701.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048.

  11. 11.

    Mylroie JE, Carew JL, Moore AI. Blue holes: definition and genesis. Carbonates Evaporates. 1995;10:225–33.

    CAS  Article  Google Scholar 

  12. 12.

    Canganella F, Bianconi G, Kato C, Gonzalez J. Microbial ecology of submerged marine caves and holes characterized by high levels of hydrogen sulphide. Rev Environ Sci Biotechnol. 2007;6:61–70.

  13. 13.

    Gischler E, Shinn EA, Oschmann W, Fiebig J, Buster NA. A 1500-year holocene caribbean climate archive from the blue hole, Lighthouse Reef, Belize. J Coast Res. 2008;246:1495–505.

    Article  CAS  Google Scholar 

  14. 14.

    Pohlman JW. The biogeochemistry of anchialine caves: progress and possibilities. Hydrobiologia. 2011;677:33–51.

    CAS  Article  Google Scholar 

  15. 15.

    Davis MC, Garey JR. Microbial function and hydrochemistry within a stratified anchialine sinkhole: A window into coastal aquifer interactions. Water. 2018;10:972–972.

    Article  CAS  Google Scholar 

  16. 16.

    Garman KM, Rubelmann H, Karlen DJ, Wu T, Garey JR. Comparison of an inactive submarine spring with an active nearshore anchialine spring in Florida. Hydrobiologia. 2011;677:65–87.

  17. 17.

    Gonzalez BC, Iliffe TM, Macalady JL, Schaperdoth I, Kakuk B. Microbial hotspots in anchialine blue holes: Initial discoveries from the Bahamas. Hydrobiologia. 2011;677:149–56.

    CAS  Article  Google Scholar 

  18. 18.

    Seymour JR, Humphreys WF, Mitchell JG. Stratification of the microbial community inhabiting an anchialine sinkhole. Aquat Microb Ecol. 2007;50:11–24.

  19. 19.

    Yao P, Wang XC, Bianchi TS, Yang ZS, Fu L, Zhang XH, et al. Carbon cycling in the world’s deepest blue hole. J Geophys Res. 2020;125:e2019JG005307.

  20. 20.

    He H, Fu L, Liu Q, Fu L, Bi N, Yang Z, et al. Community Structure, abundance and potential functions of bacteria and archaea in the Sansha Yongle blue hole, Xisha, South China Sea. Front Microbiol. 2019;10:2404–2404.

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    He P, Xie L, Zhang X, Li J, Lin X, Pu X, et al. Microbial diversity and metabolic potential in the stratified Sansha Yongle Blue Hole in the South China Sea. Sci Rep. 2020;10:5949–5949.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    DeWitt D. Submarine springs and other Karst features in offshore waters of the Gulf of Mexico and Tampa Bay, Southwest Florida Water Management District. 2003.

  23. 23.

    Hu C, Muller-Karger FE, Swarzenski PW. Hurricanes, submarine groundwater discharge, and Florida’s red tides. Geophys Res Lett. 2006;33:L11601.

    Google Scholar 

  24. 24.

    Smith CG, Swarzenski PW. An investigation of submarine groundwater-borne nutrient fluxes to the west Florida shelf and recurrent harmful algal blooms. Limnol Oceanogr. 2012;57:471–85.

    CAS  Article  Google Scholar 

  25. 25.

    Vargo GA, Heil CA, Fanning KA, Dixon LK, Neely MB, Lester K, et al. Nutrient availability in support of Karenia brevis blooms on the central West Florida Shelf: What keeps Karenia blooming? Continental Shelf Res. 2008;28:73–98.

    Article  Google Scholar 

  26. 26.

    Walsh DA, Zaikova E, Howes CG, Song YC, Wright JJ, Tringe SG, et al. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science. 2009;326:578–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Weisberg RH, Liu YG, Lembke C, Hu CM, Hubbard K, Garrett M. The coastal ocean circulation influence on the 2018 West Florida Shelf K. brevis Red Tide Bloom. J Geophys Res Oceans. 2019;124:2501–12.

    Article  Google Scholar 

  28. 28.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Rodriguez RLM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. Msystems. 2018;3: e00039-18.

  31. 31.

    Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  32. 32.

    Thiel V, Costas AMG, Fortney NW, Martinez JN, Tank M, Roden EE, et al. “Candidatus Thermonerobacter thiotrophicus,” a non-phototrophic member of the Bacteroidetes/Chlorobi with dissimilatory sulfur metabolism in hot spring mat communities. Front Microbiol. 2019;9:3159–3159.

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Helly JJ, Levin LA. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Res Part I. 2004;51:1159–68.

    CAS  Article  Google Scholar 

  34. 34.

    Xie LP, Wang BD, Pu XM, Xin M, He PQ, Li CX, et al. Hydrochemical properties and chemocline of the Sansha Yongle blue hole in the South China Sea. Sci Total Environ. 2019;649:1281–92.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Thamdrup B, Dalsgaard T, Revsbech NP. Widespread functional anoxia in the oxygen minimum zone of the Eastern South Pacific. Deep-Sea Res Part I. 2012;65:36–45.

    CAS  Article  Google Scholar 

  36. 36.

    Wyrtki K. The oxygen minima in relation to ocean circulation. Deep-Sea Res Oceanographic Abstr. 1962;9:11–23.

    CAS  Article  Google Scholar 

  37. 37.

    Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev. 2009;33:999–1043.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Luther GW, Findlay AJ, MacDonald DJ, Owings SM, Hanson TE, Beinart RA, et al. Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbiol. 2011;2:1–9.

    Article  CAS  Google Scholar 

  39. 39.

    Houghton JL, Foustoukos DI, Flynn TM, Vetriani C, Bradley AS, Fike DA. Thiosulfate oxidation by Thiomicrospira thermophila: metabolic flexibility in response to ambient geochemistry. Environ Microbiol. 2016;18:3057–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Kelly DP, Shergill JK, Lu WP, Wood AP. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol. 1997;71:95–107.

    CAS  Article  Google Scholar 

  41. 41.

    Grimm F, Franz B, Dahl C. Thiosulfate and sulfur oxidation in purple sulfur bacteria. In: Dahl C, Friedrich C, editors. Microbial sulfur metabolism. Springer: Heidelberg, Germany; 2008. p. 101–16.

  42. 42.

    Zopfi J, Ferdelman TG, Fossing H. Distribution and fate of sulfur intermediates - sulfite, tetrathionate, thiosulfate, and elemental sulfur - in marine sediments. In: Amend JP, Edwards KJ, Lyons TW, editors. Sulfur biogeochemistry: past and present. The Geological Society of America: Boulder, Colorado; 2004. p. 97–116.

  43. 43.

    Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol. 2012;10:381–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Bertagnolli AD, Stewart FJ. Microbial niches in marine oxygen minimum zones. Nat Rev Microbiol. 2018;16:723–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Hawley AK, Brewer HM, Norbeck AD, Pasǎ-Tolić L, Hallam SJ. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc Natl Acad Sci USA. 2014;111:11395–400.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–28.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Murillo AA, Ramírez-Flandes S, DeLong EF, Ulloa O. Enhanced metabolic versatility of planktonic sulfur-oxidizing gamma-proteobacteria in an oxygen-deficient coastal ecosystem. Front Mar Sci. 2014;1:1–13.

  48. 48.

    Shah V, Chang BX, Morris RM. Cultivation of a chemoautotroph from the SUP05 clade of marine bacteria that produces nitrite and consumes ammonium. ISME J. 2017;11:263–71.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Wirsen CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A, Taylor LT, et al. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Appl Environ Microbiol. 2002;68:316–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Luther GW, Glazer BT, Hohmann L, Popp JI, Tailefert M, Rozan TF, et al. Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes: polysulfides as a special case in sediments, microbial mats and hydrothermal vent waters. J Environ Monit. 2001;3:61–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Rozan TF, Theberge SM, Luther G. Quantifying elemental sulfur (S0), bisulfide (HS-) and polysulfides (S(x)2-) using a voltammetric method. Analyt Chim Acta. 2000;415:175–84.

    CAS  Article  Google Scholar 

  52. 52.

    Sievert SM, Wieringa EBA, Wirsen CO, Taylor CD. Growth and mechanism of filamentous-sulfur formation by Candidatus Arcobacter sulfidicus in opposing oxygen-sulfide gradients. Environ Microbiol. 2007;9:271–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Moussard H, Corre E, Cambon-Bonavita MA, Fouquet Y, Jeanthon C. Novel uncultured Epsilonproteobacteria dominate a filamentous sulphur mat from the 13 degrees N hydrothermal vent field, East Pacific Rise. FEMS Microbiol Ecol. 2006;58:449–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De PV. Cultivation of denitrifying bacteria: optimization of isolation conditions and diversity study. Appl Environ Microbiol. 2006;72:2637–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Taillefert M, Bono AB, Luther GW. Reactivity of freshly formed Fe(III) in synthetic solutions and (pore)waters: voltammetric evidence of an aging process. Environ Sci Technol. 2000;34:2169–77.

    CAS  Article  Google Scholar 

  56. 56.

    Barco RA, Emerson D, Sylvan JB, Orcutt BN, Jacobson Meyers ME, Ramírez GA, et al. New insight into microbial iron oxidation as revealed by the proteomic profile of an obligate iron-oxidizing chemolithoautotroph. Appl Environ Microbiol. 2015;81:5927–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37.

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean Coast. Science. 2010;330:1375–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Ding J, Zhang Y, Wang H, Jian H, Leng H, Xiao X. Microbial community structure of deep-sea hydrothermal vents on the ultraslow spreading Southwest Indian Ridge. Front Microbiol. 2017;8:1012.

  60. 60.

    Leon-Zayas R, Peoples L, Biddle JF, Podell S, Novotny M, Cameron J, et al. The metabolic potential of the single cell genomes obtained from the Challenger Deep, Mariana Trench within the candidate superphylum Parcubacteria (OD1). Environ Microbiol. 2017;19:2769–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Liu X, Li M, Castelle CJ, Probst AJ, Zhou Z, Pan J, et al. Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages. Microbiome. 2018;6:102–102.

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Ortiz-Alvarez R, Casamayor EO. High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ Microbiol Rep. 2016;8:210–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Suominen S, Dombrowski N, Damste JSS, Villanueva L. A diverse uncultivated microbial community is responsible for organic matter degradation in the Black Sea sulphidic zone. Environ Microbiol. 2021. https://doi.org/10.1111/1462-2920.14902.

  64. 64.

    Castelle CJ, Banfield JF. Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell. 2018;172:1181–97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol Lett. 2019;366:fnz008.

  66. 66.

    Tian RM, Ning DL, He ZL, Zhang P, Spencer SJ, Gao SH, et al. Small and mighty: adaptation of superphylum Patescibacteria to groundwater environment drives their genome simplicity. Microbiome. 2020;8:51.

  67. 67.

    Vigneron A, Cruaud P, Langlois V, Lovejoy C, Culley AI, Vincent WF. Ultra-small and abundant: Candidate phyla radiation bacteria are potential catalysts of carbon transformation in a thermokarst lake ecosystem. Limnol Oceanogr Lett. 2020;5:212–20.

    Article  Google Scholar 

  68. 68.

    Beam JP, Becraft ED, Brown JM, Schulz F, Jarett JK, Bezuidt O, et al. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Front Microbiol. 2020;11:1848.

  69. 69.

    Luef B, Frischkorn KR, Wrighton KC, Holman HYN, Birarda G, Thomas BC, et al. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat Commun. 2015;6:6372.

  70. 70.

    Wrighton KC, Castelle CJ, Wilkins MJ, Hug LA, Sharon I, Thomas BC, et al. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME J. 2014;8:1452–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Konstantinidis KT, Tiedje JM. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci USA. 2004;101:3160–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Moya A, Pereto J, Gil R, Latorre A. Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet. 2008;9:218–29.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Moran NA, Plague GR. Genomic changes following host restriction in bacteria. Curr Opin Genet Dev. 2004;14:627–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Chaudhury P, Quax TEF, Albers SV. Versatile cell surface structures of archaea. Mol Microbiol. 2018;107:298–311.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75.

    Pohlschroder M, Esquivel RN. Archaeal type IV pili and their involvement in biofilm formation. Front Microbiol. 2015;6:190.

  76. 76.

    Aylward FO, Santoro AE. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems. 2020;5:e00415–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Reji L, Francis CA. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME J. 2020;14:2105–15.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Santoro AE, Richter RA, Dupont CL. Planktonic marine Archaea. Annu Rev Mar Sci. 2019;11:131–58.

    Article  Google Scholar 

  79. 79.

    Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 2019;13:663–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80.

    Pereira O, Hochart C, Auguet JC, Debroas D, Galand PE. Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean. Microbiol Open. 2019;8:e00852.

    Google Scholar 

  81. 81.

    Martin-Cuadrado AB, Garcia-Heredia I, Moltó AG, López-Úbeda R, Kimes N, López-García P, et al. A new class of marine Euryarchaeota group II from the mediterranean deep chlorophyll maximum. ISME J. 2015;9:1619–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Martin-Cuadrado AB, Rodriguez-Valera F, Moreira D, Alba JC, Ivars-Martínez E, Henn MR, et al. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. ISME J. 2008;2:865–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83.

    Moreira D, Rodríguez-Valera F, López-García P. Analysis of a genome fragment of a deep-sea uncultivated Group II euryarchaeote containing 16S rDNA, a spectinomycin-like operon and several energy metabolism genes. Environ Microbiol. 2004;6:959–69.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Sforna MC, Philippot P, Somogyi A, Van Zuilen MA, Medjoubi K, Schoepp-Cothenet B, et al. Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nat Geosci. 2014;7:811–5.

    CAS  Article  Google Scholar 

  85. 85.

    Meheust R, Burstein D, Castelle CJ, Banfield JF. The distinction of CPR bacteria from other bacteria based on protein family content. Nat Commun. 2019;10:4173.

  86. 86.

    Luther GW, Glazer BT, Ma S, Trouwborst RE, Moore TS, Metzger E, et al. Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Mar Chem. 2008;108:221–35.

    CAS  Article  Google Scholar 

  87. 87.

    Brendel PJ, Luther GW. Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S(-II) in porewaters of marine and freshwater sediments. Environ Sci Technol. 1995;29:751–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Arar EJ, Collins GB. Method 445.0 in vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. Washington, DC: U.S. Environmental Protection Agency; 1997.

  89. 89.

    Bran+Luebbe/Seal. Ammonia in water and seawater, in Method No G-171-96. 2005. Norderstedt, Germany.

  90. 90.

    Bran+Luebbe/Seal. Nitrate and nitrite in water and seawater; total nitrogen in persulfate digests, in Metho No G-172-96. 2010. Norderstedt, Germany.

  91. 91.

    Solórzano L, Sharp JH. Determination of total dissolved nitrogen in natural waters. Limnol Oceanogr. 1980;25:751–4.

    Article  Google Scholar 

  92. 92.

    Solórzano L, Sharp JH. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnol Oceanogr. 1980;25:754–8.

    Article  Google Scholar 

  93. 93.

    Dickson AG, Sabine CL, Christian JR. Guide to best practices for ocean CO2 measurements. PICES Special Publication 3. 2007.

  94. 94.

    Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Analy Chim Acta. 1962;27:31–6.

    CAS  Article  Google Scholar 

  95. 95.

    Stookey LL. Ferrozine—a new spectrophotometric reagent for iron. Anal Chem. 1970;42:779–81.

    CAS  Article  Google Scholar 

  96. 96.

    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    Padilla CC, Bertagnolli AD, Bristow LA, Sarode N, Glass JB, Thamdrup B, et al. Metagenomic binning recovers a transcriptionally active gammaproteobacterium linking methanotrophy to partial denitrification in an anoxic oxygen minimum zone. Front Mar Sci. 2017;4:23–23.

    Article  Google Scholar 

  98. 98.

    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550–550.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. 102.

    McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217–e61217.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.

  104. 104.

    Willis AD, Martin BD. DivNet: estimating diversity in networked communities. bioRxiv. 2018. Available from https://www.biorxiv.org/content/10.1101/305045v1.

  105. 105.

    Wickham H. Elegant graphics for data analysis. New York: Springer-Verlag; 2016.

    Google Scholar 

  106. 106.

    Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. vegan: Community Ecology package, in R package version 2.5-5. 2019. https://cran.r-project.org/package=vegan.

  107. 107.

    Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 2015;16:51–51.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. 108.

    Nayfach S, Bradley PH, Wyman SK, Laurent TJ, Williams A, Eisen JA, et al. Automated and accurate estimation of gene family abundance from shotgun metagenomes. PLoS Comput Biol. 2015;11:e1004573.

  109. 109.

    Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell. 2016;166:1103–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112.

    Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics. 2016;32:1088–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113.

    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114.

    Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119–119.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  115. 115.

    James BT, Luczak BB, Girgis HZ. MeShClust: an intelligent tool for clustering DNA sequences. Nucleic Acids Res. 2018;46:e83.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  116. 116.

    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2019;36:2251–2.

    PubMed Central  Article  CAS  Google Scholar 

  117. 117.

    Boratyn GM, Thierry-Mieg J, Thierry-Mieg D, Busby B, Madden TL. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinformatics. 2019;20:405–405.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. 118.

    Dunivin TK, Yeh SY, Shade A. A global survey of arsenic-related genes in soil microbiomes. BMC Biol. 2019;17:45–45.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.

  120. 120.

    Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci. 2017;3:e104.

  121. 121.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  122. 122.

    Olm MR, Brown CT, Brooks B, Banfield JF. DRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.

    PubMed Central  Google Scholar 

  124. 124.

    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019;47:p. W256–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the captains of the R/V William R. Mote and R/V Eugenie Clark for their support and professionalism, and staff at Mote Marine Lab for their work in sample collection and processing. We are also indebted to all of the volunteer technical divers who made this mission possible. We are grateful to Dr. Navid Constantinou for his help modeling the wind speeds required for the turnover of the water column. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Funding

This work was funded by the National Oceanic and Atmospheric Administration Office of Exploration and Research [7NA18OAR0110291].

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. V. Patin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patin, N.V., Dietrich, Z.A., Stancil, A. et al. Gulf of Mexico blue hole harbors high levels of novel microbial lineages. ISME J (2021). https://doi.org/10.1038/s41396-021-00917-x

Download citation

Search

Quick links