Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations


Natural bacterial populations are subjected to constant predation pressure by bacteriophages. Bacteria use a variety of molecular mechanisms to defend themselves from phage predation. However, since phages are nonmotile, perhaps the simplest defense against phage is for bacteria to move faster than phages. In particular, chemotaxis, the active migration of bacteria up attractant gradients, may help the bacteria escape slowly diffusing phages. Here we study phage infection dynamics in migrating bacterial populations driven by chemotaxis through low viscosity agar plates. We find that expanding phage–bacteria populations supports two moving fronts, an outermost bacterial front driven by nutrient uptake and chemotaxis and an inner phage front at which the bacterial population collapses due to phage predation. We show that with increasing adsorption rate and initial phage population, the speed of the moving phage front increases, eventually overtaking the bacterial front and driving the system across a transition from a regime where bacterial front speed exceeds that of the phage front to one where bacteria must evolve phage resistance to survive. Our data support the claim that this process requires phage to hitchhike with moving bacteria. A deterministic model recapitulates the transition under the assumption that phage virulence declines with host growth rate which we confirm experimentally. Finally, near the transition between regimes we observe macroscopic fluctuations in bacterial densities at the phage front. Our work opens a new, spatio-temporal, line of investigation into the eco-evolutionary struggle between bacteria and phage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Spatio-temporal dynamics of bacteria and phage in a soft agar plate with 1mM concentration CaCl2.
Fig. 2: Phages or nutrients regulate bacterial abundances depending on initial phage population size and infectivity.
Fig. 3: Bacterial population dynamics with 5 mM CaCl2 and 50,000 phage (PFUs) in the inoculum.


  1. 1.

    Datta MS, Sliwerska E, Gore J, Polz MF, Cordero OX. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat Commun. 2016;7:11965.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Michalak AM, Anderson EJ, Beletsky D, Boland S, Bosch NS, Bridgeman TB, et al. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc Natl Acad Sci USA. 2013;110:6448–52.

    CAS  PubMed  Google Scholar 

  3. 3.

    Campbell A. Conditions for the existence of bacteriophage. Evolution. 1961;15:153.

    Google Scholar 

  4. 4.

    Levin BR, Stewart FM, Chao L. Resource-limited growth, competition, and predation—a model and experimental studies with bacteria and bacteriophage. Am Nat. 1977;111:3–24.

    Google Scholar 

  5. 5.

    Thingstad TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr. 2000;45:1320–8.

    Google Scholar 

  6. 6.

    Bohannan BJ, Lenski RE. Effect of resource enrichment on a chemostat community of bacteria and bacteriophage. Ecology. 1997;78:2303–15.

    Google Scholar 

  7. 7.

    Wang Z, Goldenfeld N. Fixed points and limit cycles in the population dynamics of lysogenic viruses and their hosts. Phys Rev E. 2010;82:171–18.

    Google Scholar 

  8. 8.

    Jover LF, Cortez MH, Weitz JS. Mechanisms of multi-strain coexistence in host–phage systems with nested infection networks. J Theor Biol. 2013;332:65–77.

    PubMed  Google Scholar 

  9. 9.

    Chao L, Levin BR, Stewart FM. A complex community in a simple habitat: an experimental study with bacteria and phage. Ecology. 1977;58:369–78.

    Google Scholar 

  10. 10.

    Mizoguchi K, Morita M, Fischer CR, Yoichi M, Tanji Y, Unno H. Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture. Appl Environ Microbiol. 2003;69:170–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Waterbury JB, Valois FW. Resistance to co-occurring phages enables marine synechococcus communities to coexist with cyanophages abundant in seawater. Appl Environ Microbiol. 1993;59:3393–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Fort J, Méndez V. Time-delayed spread of viruses in growing plaques. Phys Rev Lett. 2002;89:786–4.

    Google Scholar 

  13. 13.

    Yin J, McCaskill JS. Replication of viruses in a growing plaque—a reaction-diffusion model. Biophys J. 1992;61:1540–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Gallet R, Shao Y, Wang I-N. High adsorption rate is detrimental to bacteriophage fitness in a biofilm-like environment. BMC Evolut Biol. 2009;9:241–12.

    Google Scholar 

  15. 15.

    Roychoudhury P, Shrestha N, Wiss VR, Krone SM. Fitness benefits of low infectivity in a spatially structured population of bacteriophages. Proc Biol Sci. 2014;281:20132563–9.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Dennehy JJ, Abedon ST, Turner PE. Host density impacts relative fitness of bacteriophage Phi6 genotypes in structured habitats. Evolution. 2007;61:2516–27.

    PubMed  Google Scholar 

  17. 17.

    Eriksen RS, Svenningsen SL, Sneppen K, Mitarai N. A growing microcolony can survive and support persistent propagation of virulent phages. Proc Nat Acad Sci. 2018;115:337–42.

    CAS  PubMed  Google Scholar 

  18. 18.

    Sutherland IW, Hughes KA, Skillman LC, Tait K. The interaction of phage and biofilms. FEMS Microbiol Lett. 2004;232:1–6.

    CAS  PubMed  Google Scholar 

  19. 19.

    Vidakovic L, Singh PK, Hartmann R, Nadell CD, Drescher K. Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nat Microbiol. 2018;3:26–31.

    CAS  PubMed  Google Scholar 

  20. 20.

    Hughes KA, Sutherland IW, Jones MV. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology. 1998;144:3039–47.

    CAS  PubMed  Google Scholar 

  21. 21.

    Corbin BD, McLean RJ, Aron GM. Bacteriophage T4 multiplication in a glucose-limited Escherichia colibiofilm. Can J Microbiol. 2001;47:680–4.

    CAS  PubMed  Google Scholar 

  22. 22.

    Abedon ST, editor. Bacteriophage ecology: population growth, evolution, and impact of bacterial viruses. 2008. Cambridge University Press; 2008 May 1.

  23. 23.

    Heilmann S, Sneppen K, Krishna S. Sustainability of virulence in a phage-bacterial ecosystem. J Virol. 2010;84:3016–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Heilmann S, Sneppen K, Krishna S. Coexistence of phage and bacteria on the boundary of self-organized refuges. Proc Nat Acad Sci. 2012;109:12828–33.

    CAS  PubMed  Google Scholar 

  25. 25.

    Adler J. Chemotaxis in bacteria. Science. 1966;153:708–16.

    CAS  PubMed  Google Scholar 

  26. 26.

    Fraebel DT, Mickalide H, Schnitkey D, Merritt J, Kuhlman TE, Kuehn S. Environment determines evolutionary trajectory in a constrained phenotypic space. Elife. 2017;6:e24669.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Stocker R, Seymour JR. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol Mol Biol Rev. 2012;76:792–812.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Allweiss B, Dostal J, Carey KE, Edwards TF, Freter R. The role of chemotaxis in the ecology of bacterial pathogens of mucosal surfaces. Nature. 1977;266:448–50.

    CAS  PubMed  Google Scholar 

  29. 29.

    Chet I, Mitchell R. Ecological aspects of microbial chemotactic behavior. Annu Rev Microbiol. 1976;30:221–39.

    CAS  PubMed  Google Scholar 

  30. 30.

    Cremer J, Honda T, Tang Y, Wong-Ng J, Vergassola M, Hwa T. Chemotaxis as a navigation strategy to boost range expansion. Nature. 2019;575:658–63. https://doi.org/10.1038/s41586-019-1733-y.

  31. 31.

    Getz WM, Dougherty ER. Discrete stochastic analogs of Erlang epidemic models. J Biol Dyn. 2018;12:16–38.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hurtado PJ, Kirosingh AS. Generalizations of the ‘Linear Chain Trick’: incorporating more flexible dwell time distributions into mean field ODE models. J Math Biol. 2019;79:1831–83.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Champredon D, Dushoff J, Earn DJD. Equivalence of the Erlang-distributed SEIR epidemic model and the renewal equation. SIAM J Appl Math 2018;78:3258–78.

    Google Scholar 

  34. 34.

    Hadas H, Einav M, Fishov I, Zaritsky A. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology. 1997;143:179–85.

    CAS  PubMed  Google Scholar 

  35. 35.

    Middelboe M. Bacterial growth rate and marine virus-host dynamics. Microb Ecol. 2000;40:114–24.

    CAS  PubMed  Google Scholar 

  36. 36.

    Golec P, Karczewska-Golec J, Łoś M, Węgrzyn G. Bacteriophage T4 can produce progeny virions in extremely slowly growing Escherichia colihost: comparison of a mathematical model with the experimental data. FEMS Microbiol Lett. 2014;351:156–61.

    CAS  PubMed  Google Scholar 

  37. 37.

    Choua M, Bonachela JA. Ecological and evolutionary consequences of viral plasticity. Am Naturalist. 2019;193:346–58.

    Google Scholar 

  38. 38.

    Fehér T, Karcagi I, Blattner FR, Pósfai G. Bacteriophage recombineering in the lytic state using the lambda red recombinases. Microb Biotechnol. 2011;5:466–76.

    PubMed  Google Scholar 

  39. 39.

    Baltus RE, Badireddy AR, Delavari A, Chellam S. Free diffusivity of icosahedral and tailed bacteriophages: experiments, modeling, and implications for virus behavior in media filtration and flocculation. Environ Sci Technol. 2017;51:1433–40.

    CAS  PubMed  Google Scholar 

  40. 40.

    Fu X, Kato S, Long J, Mattingly HH, He C, Vural, et al. Spatial self-organization resolves conflicts between individuality and collective migration. Nat Commun. 2018;9:1–12. https://doi.org/10.1038/s41467-018-04539-4.

    CAS  Article  Google Scholar 

  41. 41.

    Yang Y, Pollard AM, Höfler C, Poschet G, Wirtz M, Hell R, et al. Relation between chemotaxis and consumption of amino acids in bacteria. Mol Microbiol. 2015;96:1272–82. https://doi.org/10.1111/mmi.13006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Hama H, Shimamoto T, Tsuda M, Tsuchiya T. Characterization of a novel L-serine transport system in Escherichia coli. J Bacteriol. 1988;170:2236–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Schellenberg GD, Furlong CE. Resolution of the multiplicity of the glutamate and aspartate transport systems of Escherichia coli. J Biol Chem. 1977;252:9055–64.

  44. 44.

    Franklin NC. Mutation in gal U gene of E. coli blocks phage P1 infection. Virology. 1969;38:189–91.

    CAS  PubMed  Google Scholar 

  45. 45.

    Thomason LC, Costantino N, Court DL. E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol. 2007;Chapter 1:Unit 1.17.

    PubMed  Google Scholar 

  46. 46.

    Demerec M, Fano U. Bacteriophage-resistant mutants in Escherichia Coli. Genetics. 1945;30:119–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, Kishony R. Spatiotemporal microbial evolution on antibiotic landscapes. Science. 2016;353:1147–51.

  48. 48.

    De Paepe M, Taddei F. Viruses’ life history: towards a mechanistic basis of a trade-off between survival and reproduction among phages. PLoS Biol. 2006;4:e193–9.

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Wall JD, Harriman PD. Phage P1 mutants with altered transducing abilities for Escherichia coli. Virology. 1974;59:532–44.

    CAS  PubMed  Google Scholar 

  50. 50.

    García LR, Molineux IJ. Rate of translocation of bacteriophage T7 DNA across the membranes of Escherichia coli. J Bacteriol. 1995;177:4066–76.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Novick SL, Baldeschwieler JD. Fluorescence measurement of the kinetics of DNA injection by bacteriophage lambda into liposomes. Biochemistry. 1988;27:7919–24.

    CAS  PubMed  Google Scholar 

  52. 52.

    Dixit PD, Pang TY, Studier FW, Maslov S. Recombinant transfer in the basic genome of Escherichia coli. Proc Nat Acad Sci. 2015;112:9070–5.

    CAS  PubMed  Google Scholar 

  53. 53.

    Rabinovitch A, Fishov I, Hadas H, Einav M, Zaritsky A. Bacteriophage T4 development in Escherichia coli is growth rate dependent. J Theor Biol. 2002;216:1–4.

    PubMed  Google Scholar 

  54. 54.

    Edwards KF, Steward GF. Host traits drive viral life histories across phytoplankton viruses. Am Nat. 2018;191:566–81.

    PubMed  Google Scholar 

  55. 55.

    Birch EW, Ruggero NA, Covert MW. Determining host metabolic limitations on viral replication via integrated modeling and experimental perturbation. PLoS Comput Biol. 2012;8:e1002746–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Hallatschek O, Hersen P, Ramanathan S, Nelson DR. Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci USA. 2007;104:19926–30.

    CAS  PubMed  Google Scholar 

  57. 57.

    Weitz JS, Dushoff J. Alternative stable states in host–phage dynamics. Theor Ecol. 2007;1:13–9.

    Google Scholar 

Download references


This research has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007 2013)/ERC Grant Agreement No. 740704. DP and SK acknowledge the support from the National Science Foundation Physics Frontiers Center Program (PHY 0822613 and PHY 1430124). This work was performed in part at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY 1607611.

Author information



Corresponding authors

Correspondence to Sergei Maslov or Kim Sneppen or Seppe Kuehn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ping, D., Wang, T., Fraebel, D.T. et al. Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations. ISME J 14, 2007–2018 (2020). https://doi.org/10.1038/s41396-020-0664-9

Download citation

Further reading


Quick links