Two-way microscale interactions between immigrant bacteria and plant leaf microbiota as revealed by live imaging

Abstract

The phyllosphere – the aerial parts of plants – is an important microbial habitat that is home to diverse microbial communities. The spatial organization of bacterial cells on leaf surfaces is non-random, and correlates with leaf microscopic features. Yet, the role of microscale interactions between bacterial cells therein is not well understood. Here, we ask how interactions between immigrant bacteria and resident microbiota affect the spatial organization of the combined community. By means of live imaging in a simplified in vitro system, we studied the spatial organization, at the micrometer scale, of the biocontrol agent Pseudomonas fluorescens A506 and the plant pathogen P. syringae B728a when introduced to pear and bean leaf microbiota (the corresponding native plants of these strains). We found significant co-localization of immigrant and resident microbial cells at distances of a few micrometers, for both strains. Interestingly, this co-localization was in part due to preferential attachment of microbiota cells near newly formed P. fluorescens aggregates. Our results indicate that two-way immigrant bacteria – resident microbiota interactions affect the microscale spatial organization of leaf microbiota, and possibly that of other surface-related microbial communities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental setup.
Fig. 2: Surface colonization dynamics without microbiota (leaf solution only).
Fig. 3: Extracted microbiota from bean and pear leaves.
Fig. 4: Surface colonization of immigrant bacteria introduced to resident microbiota.
Fig. 5: Spatial analysis of combined immigrant bacteria and resident microbiota based on Pair Cross-correlation and Nearest Neighbor methods.
Fig. 6: Two-way microscale interaction dynamics.

References

  1. 1.

    Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69:1875–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Lindow SE, Leveau JH. Phyllosphere microbiology. Curr Opin Biotechnol. 2002;13:238–43.

    CAS  PubMed  Google Scholar 

  3. 3.

    Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828.

    CAS  PubMed  Google Scholar 

  4. 4.

    Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE. The phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst. 2016;47:1–24.

    Google Scholar 

  5. 5.

    Bringel F, Couée I. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol. 2015;6:486.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol. 2010;12:2885–93.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH. Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 2012;6:1812.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Beattie GA, Lindow SE. Bacterial colonization of leaves: a spectrum of strategies. Phytopathology. 1999;89:353–359.

    CAS  PubMed  Google Scholar 

  9. 9.

    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:e1002352.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Laforest-Lapointe I, Messier C, Kembel SW. Tree phyllosphere bacterial communities: exploring the magnitude of intra-and inter-individual variation among host species. PeerJ. 2016;4:e2367.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Monier J-M, Lindow S. Frequency, size, and localization of bacterial aggregates on bean leaf surfaces. Appl Environ Microbiol. 2004;70:346–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Tecon R, Leveau JH. The mechanics of bacterial cluster formation on plant leaf surfaces as revealed by bioreporter technology. Environ Microbiol. 2012;14:1325–32.

    CAS  PubMed  Google Scholar 

  13. 13.

    Remus-Emsermann MN, Lücker S, Müller DB, Potthoff E, Daims H, Vorholt JA. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on A rabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol. 2014;16:2329–40.

    CAS  PubMed  Google Scholar 

  14. 14.

    Morris CE, Monier J, Jacques M. Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl Environ Microbiol. 1997;63:1570–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Esser DS, Leveau JH, Meyer KM, Wiegand K. Spatial scales of interactions among bacteria and between bacteria and the leaf surface. FEMS Microbiol Ecol. 2015;91:fiu034.

    PubMed  Google Scholar 

  16. 16.

    Remus-Emsermann MN, Schlechter RO. Phyllosphere microbiology: at the interface between microbial individuals and the plant host. N. Phytologist. 2018;218:1327–33.

    Google Scholar 

  17. 17.

    Monier J-M, Lindow S. Spatial organization of dual-species bacterial aggregates on leaf surfaces. Appl Environ Microbiol. 2005;71:5484–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Peredo EL, Simmons SL. Leaf-FISH: microscale imaging of bacterial taxa on phyllosphere. Front Microbiol. 2018;8:2669.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Remus-Emsermann MN, Tecon R, Kowalchuk GA, Leveau JH. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere. ISME J. 2012;6:756.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Remus-Emsermann MN, Kowalchuk GA, Leveau JH. Single-cell versus population-level reproductive success of bacterial immigrants to pre-colonized leaf surfaces. Environ Microbiol Rep. 2013;5:387–92.

    PubMed  Google Scholar 

  21. 21.

    Monier J-M, Lindow S. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces. Microb Ecol. 2005;49:343–52.

    PubMed  Google Scholar 

  22. 22.

    Poza-Carrion C, Suslow T, Lindow S. Resident bacteria on leaves enhance survival of immigrant cells of Salmonella enterica. Phytopathology. 2013;103:341–51.

    PubMed  Google Scholar 

  23. 23.

    Grinberg M, Orevi T, Kashtan N. Bacterial surface colonization, preferential attachment and fitness under periodic stress. PLoS Comput Biol. 2019;15:e1006815.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Beattie GA, Lindow SE. Comparison of the behavior of epiphytic fitness mutants of Pseudomonas syringae under controlled and field conditions. Appl Environ Microbiol. 1994;60:3799–808.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Loper JE, Lindow SE. Lack of evidence for the in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surfaces. J Phytopathol. 1987;77:1449–54.

    Google Scholar 

  26. 26.

    Wilson M, Hirano S, Lindow S. Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the leaf. Appl Environ Microbiol. 1999;65:1435–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Stockwell V, Johnson K, Sugar D, Loper J. Control of fire blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1 applied as single strains and mixed inocula. Phytopathology. 2010;100:1330–9.

    CAS  PubMed  Google Scholar 

  28. 28.

    Wilson M, Lindow S. Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology. 1993;83:117–23.

    Google Scholar 

  29. 29.

    Choi K-H, Schweizer HP. mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc. 2006;1:153.

    CAS  PubMed  Google Scholar 

  30. 30.

    Morris CE, Monier J-M, Jacques M-A. A technique to quantify the population size and composition of the biofilm component in communities of bacteria in the phyllosphere. Appl Environ Microbiol. 1998;64:4789–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wang Q, Niemi J, Tan CM, You L, West M. Image segmentation and dynamic lineage analysis in single-cell fluorescence microscopy. Cytometry A. 2010;77:101–10.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Daims H, Lücker S, Wagner M. Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol. 2006;8:200–13.

    CAS  PubMed  Google Scholar 

  33. 33.

    Daims H, Wagner M. In situ techniques and digital image analysis methods for quantifying spatial localization patterns of nitrifiers and other microorganisms in biofilm and flocs. Methods Enzymol. 2011;496:185–215.

  34. 34.

    Reed M, Howard C. Stereological estimation of covariance using linear dipole probes. J Microsc. 1999;195:96–103.

    CAS  PubMed  Google Scholar 

  35. 35.

    Van Der Wal A, Tecon R, Kreft J-U, Mooij WM, Leveau JH. Explaining bacterial dispersion on leaf surfaces with an individual-based model (PHYLLOSIM). PloS ONE. 2013;8:e75633.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Schmidt H, Nunan N, Höck A, Eickhorst T, Kaiser C, Woebken D, et al. Recognizing patterns: spatial analysis of observed microbial colonization on root surfaces. Front Environ Sci. 2018;6:61.

    Google Scholar 

  37. 37.

    Gantner S, Schmid M, Dürr C, Schuhegger R, Steidle A, Hutzler P, et al. In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol. 2006;56:188–94.

    CAS  PubMed  Google Scholar 

  38. 38.

    Schillinger C, Petrich A, Lux R, Riep B, Kikhney J, Friedmann A, et al. Co-localized or randomly distributed? Pair cross correlation of in vivo grown subgingival biofilm bacteria quantified by digital image analysis. PLoS ONE. 2012;7:e37583.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Mercier J, Lindow S. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol. 2000;66:369–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Zhao K, Tseng BS, Beckerman B, Jin F, Gibiansky ML, Harrison JJ, et al. Psl trails guide exploration and microcolony formation in early P. aeruginosa biofilms. Nature. 2013;497:388.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Hödl I, Hödl J, Wörman A, Singer G, Besemer K, Battin TJ. Voronoi tessellation captures very early clustering of single primary cells as induced by interactions in nascent biofilms. PloS ONE. 2011;6:e26368.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Mittelviefhaus M, Müller DB, Zambelli T, Vorholt JA. A modular atomic force microscopy approach reveals a large range of hydrophobic adhesion forces among bacterial members of the leaf microbiota. ISME J. 2019;13:1878–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Laganenka L, Colin R, Sourjik V. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat Commun. 2016;7:12984.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Laganenka L, Sourjik V. Autoinducer 2-dependent Escherichia coli biofilm formation is enhanced in a dual-species coculture. Appl Environ Microbiol. 2018;84:e02638–17.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Dulla G, Lindow SE. Quorum size of Pseudomonas syringae is small and dictated by water availability on the leaf surface. Proc Natl Acad Sci. 2008;105:3082–7.

    CAS  PubMed  Google Scholar 

  46. 46.

    Bertsche U, Mayer C, Götz F, Gust AA. Peptidoglycan perception—sensing bacteria by their common envelope structure. Int J Med Microbiol. 2015;305:217–23.

    CAS  PubMed  Google Scholar 

  47. 47.

    Monier J-M, Lindow S. Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci. 2003;100:15977–82.

    CAS  PubMed  Google Scholar 

  48. 48.

    Grinberg M, Orevi T, Steinberg S, Kashtan N. Bacterial survival in microscopic surface wetness. eLife. 2019;8:e48508.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Shank EA, Kolter R. New developments in microbial interspecies signaling. Curr Opin Microbiol. 2009;12:205–14.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Hadar for valuable comments on the manuscript. We thank S. Lindow for kindly providing bacterial strains, and R. Feuchtwanger from Gan Hasadeh and N. Shachar for providing fresh leaves for this study. JP acknowledges the Lady Davis Trust for a postdoctoral fellowship. MB acknowledges the Rudin MSc scholarship. This work was supported by a research grant to NK from the James S. McDonnell Foundation (Studying Complex Systems Scholar Award, Grant #220020475) and from the Israel Science Foundation (ISF #1396/19).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nadav Kashtan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steinberg, S., Grinberg, M., Beitelman, M. et al. Two-way microscale interactions between immigrant bacteria and plant leaf microbiota as revealed by live imaging. ISME J (2020). https://doi.org/10.1038/s41396-020-00767-z

Download citation

Search