Intracellular amorphous Ca-carbonate and magnetite biomineralization by a magnetotactic bacterium affiliated to the Alphaproteobacteria

Abstract

Bacteria synthesize a wide range of intracellular submicrometer-sized inorganic precipitates of diverse chemical compositions and structures, called biominerals. Their occurrences, functions and ultrastructures are not yet fully described despite great advances in our knowledge of microbial diversity. Here, we report bacteria inhabiting the sediments and water column of the permanently stratified ferruginous Lake Pavin, that have the peculiarity to biomineralize both intracellular magnetic particles and calcium carbonate granules. Based on an ultrastructural characterization using transmission electron microscopy (TEM) and synchrotron-based scanning transmission X-ray microscopy (STXM), we showed that the calcium carbonate granules are amorphous and contained within membrane-delimited vesicles. Single-cell sorting, correlative fluorescent in situ hybridization (FISH), scanning electron microscopy (SEM) and molecular typing of populations inhabiting sediments affiliated these bacteria to a new genus of the Alphaproteobacteria. The partially assembled genome sequence of a representative isolate revealed an atypical structure of the magnetosome gene cluster while geochemical analyses indicate that calcium carbonate production is an active process that costs energy to the cell to maintain an environment suitable for their formation. This discovery further expands the diversity of organisms capable of intracellular Ca-carbonate biomineralization. If the role of such biomineralization is still unclear, cell behaviour suggests that it may participate to cell motility in aquatic habitats as magnetite biomineralization does.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Observation of the refractive magnetotactic bacterium from Lake Pavin.
Fig. 2: Microscopy images of magnetotactic bacteria with electron-dense inclusions isolated from Lake Pavin sediment samples.
Fig. 3: Chemical identification of the mineral phase in the magnetosomes and the large inclusions of bacteria isolated from sediment samples.
Fig. 4: Evidence of strontium and barium in the calcium-rich inclusions.
Fig. 5: STXM analyses measured at the C K-edge on intracellular inclusions of magnetotactic bacteria isolated from Lake Pavin.
Fig. 6: Phylogenetic and magnetosome gene cluster (MGC) analyses of ACC-producing MTB isolated from sediment samples of Lake Pavin.
Fig. 7: Fluorescence in situ hybridization (FISH) of magnetically concentrated MTB from the sediments of Lake Pavin.

References

  1. 1.

    Weiner S, Dove PM. An overview of biomineralization processes and the problem of the vital effect. Rev Miner Geochem. 2003;54:1–29.

    CAS  Google Scholar 

  2. 2.

    Benzerara K, Miot J, Morin G, Ona-Nguema G, Skouri-Panet F, Férard C. Significance, mechanisms and environmental implications of microbial biomineralization. Comptes Rendus Geosci. 2011;343:160–7.

    CAS  Google Scholar 

  3. 3.

    Lowenstam HA. Minerals formed by organisms. Science. 1981;211:1126–31.

    CAS  PubMed  Google Scholar 

  4. 4.

    Blakemore R. Magnetotactic bacteria. Science. 1975;190:377–9.

    CAS  PubMed  Google Scholar 

  5. 5.

    Uebe R, Schüler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol. 2016;14:621–37.

    CAS  PubMed  Google Scholar 

  6. 6.

    Grant CR, Wan J, Komeili A. Organelle formation in bacteria and archaea. Annu Rev Cell Dev Biol. 2018;34:217–38.

    CAS  PubMed  Google Scholar 

  7. 7.

    Schewiakoff W. Über einen neuen bacterienahnlichen organismus des Süsswassers. Heidelb Habilit. 1893;1–38.

  8. 8.

    West GS, Griffiths BM. The lime-sulphur bacteria of the genus hillhousia. Ann Bot. 1913;os-27:83–91.

    Google Scholar 

  9. 9.

    Head IM, Gray ND, Clarke KJ, Pickup RW, Jones JG. The phylogenetic position and ultrastructure of the uncultured bacterium Achromatium oxaliferum. Microbiol Read Engl. 1996;142(Pt 9):2341–54.

    CAS  Google Scholar 

  10. 10.

    Salman V, Yang T, Berben T, Klein F, Angert E, Teske A. Calcite-accumulating large sulfur bacteria of the genus Achromatium in Sippewissett Salt Marsh. ISME J. 2015;9:2503–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Mansor M, Hamilton TL, Fantle MS, Macalady J. Metabolic diversity and ecological niches of Achromatium populations revealed with single-cell genomic sequencing. Front Microbiol. 2015;6:822.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Gray N, Head I. The family achromatiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes: Gammaproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 1–14.

  13. 13.

    Head IM, Gray ND, Howarth R, Pickup RW, Clarke KJ, Jones JG. Achromatium oxaliferum Understanding the Unmistakable. In: Schink B, editor. Advances in microbial ecology. Boston, MA: Springer US; 2000. p. 1–40.

  14. 14.

    Babenzien H-D, Sass H. The sediment-water interface—habitat of the unusual bacterium Achromatium oxaliferum. Adv Limnol. 1996;48:247–51.

    Google Scholar 

  15. 15.

    Gray ND, Pickup RW, Jones JG, Head IM. Ecophysiological evidence that achromatium oxaliferum is responsible for the oxidation of reduced sulfur species to sulfate in a freshwater sediment. Appl Environ Microbiol. 1997;63:1905–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Gray ND, Howarth R, Pickup RW, Jones JG, Head IM. Substrate uptake by uncultured bacteria from the genus Achromatium determined by microautoradiography. Appl Environ Microbiol. 1999;65:5100–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Babenzien H-D. Achromatium oxaliferum and its ecological niche. Zentralblatt Für Mikrobiol. 1991;146:41–49.

    Google Scholar 

  18. 18.

    Gray ND, Comaskey D, Miskin IP, Pickup RW, Suzuki K, Head IM. Adaptation of sympatric Achromatium spp. to different redox conditions as a mechanism for coexistence of functionally similar sulphur bacteria. Environ Microbiol. 2004;6:669–77.

    CAS  PubMed  Google Scholar 

  19. 19.

    Couradeau E, Benzerara K, Gérard E, Moreira D, Bernard S, Brown GE, et al. An early-branching microbialite cyanobacterium forms intracellular carbonates. Science. 2012;336:459–62.

    CAS  PubMed  Google Scholar 

  20. 20.

    Cam N, Benzerara K, Georgelin T, Jaber M, Lambert J-F, Poinsot M, et al. Selective Uptake of Alkaline Earth Metals by Cyanobacteria Forming Intracellular Carbonates. Environ Sci Technol. 2016;50:11654–62.

    CAS  PubMed  Google Scholar 

  21. 21.

    Blondeau M, Sachse M, Boulogne C, Gillet C, Guigner J-M, Skouri-Panet F, et al. Amorphous calcium carbonate granules form within an intracellular compartment in calcifying cyanobacteria. Front Microbiol. 2018;9:1768.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Li J, Margaret Oliver I, Cam N, Boudier T, Blondeau M, Leroy E, et al. Biomineralization patterns of intracellular carbonatogenesis in cyanobacteria: molecular hypotheses. Minerals. 2016;6:10.

  23. 23.

    Benzerara K, Skouri-Panet F, Li J, Férard C, Gugger M, Laurent T, et al. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc Natl Acad Sci USA. 2014;111:10933–8.

    CAS  PubMed  Google Scholar 

  24. 24.

    Bradley JA, Daille LK, Trivedi CB, Bojanowski CL, Stamps BW, Stevenson BS, et al. Carbonate-rich dendrolitic cones: insights into a modern analog for incipient microbialite formation, Little Hot Creek, Long Valley Caldera, California. NPJ Biofilms Microbiomes. 2017;3:32.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Moreira D, Tavera R, Benzerara K, Skouri-Panet F, Couradeau E, Gérard E, et al. Description of Gloeomargarita lithophora gen. nov., sp. nov., a thylakoid-bearing, basal-branching cyanobacterium with intracellular carbonates, and proposal for Gloeomargaritales ord. nov. Int J Syst Evol Microbiol. 2017;67:653–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Mehta N, Benzerara K, Kocar BD, Chapon V. Sequestration of radionuclides radium-226 and strontium-90 by cyanobacteria forming intracellular calcium carbonates. Environ Sci Technol. 2019;53:12639–47.

    CAS  PubMed  Google Scholar 

  27. 27.

    Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol CB. 2017;27:386–91.

    CAS  PubMed  Google Scholar 

  28. 28.

    la Rivière JWM, Schmidt K. Morphologically Conspicuous Sulfur-Oxidizing Eubacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG, editors. The prokaryotes: a handbook on habitats, isolation, and identification of bacteria. Berlin Heidelberg: Springer; 1981. p. 1037–48.

  29. 29.

    Gray ND. The unique role of intracellular calcification in the genus achromatium. In: Shively JM, editor. Inclusions in prokaryotes. Berlin, Heidelberg: Springer; 2006. p. 299–309.

  30. 30.

    Miot J, Jezequel D, Benzerara K, Cordier L, Rivas-Lamelo S, Skouri-Panet F, et al. Mineralogical diversity in lake pavin: connections with water column chemistry and biomineralization processes. Minerals. 2016;6:UNSP 24.

    Google Scholar 

  31. 31.

    Podda F, Michard G. Mesure colorimétrique de l’alcalinité. Comptes Rendus Acad Sci - Sér II. 1994;319:651–7.

    CAS  Google Scholar 

  32. 32.

    Sarazin G, Michard G, Prevot F. A rapid and accurate spectroscopic method for alkalinity measurements in sea water samples. Water Res. 1999;33:290–4.

    CAS  Google Scholar 

  33. 33.

    Zeyen N, Daval D, Lopez-Garcia P, Moreira D, Gaillardet J, Benzerara K. Geochemical conditions allowing the formation of modern lacustrine microbialites. Procedia Earth Planet Sci. 2017;17:380–3.

    Google Scholar 

  34. 34.

    Purgstaller B, Goetschl KE, Mavromatis V, Dietzel M. Solubility investigations in the amorphous calcium magnesium carbonate system. CrystEngComm. 2018;21:155–64.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Schüler D. The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. Int Microbiol J Span Soc Microbiol. 2002;5:209–14.

    Google Scholar 

  36. 36.

    Lane DJ. 16S/23S sequencing. In: Stackebrandt E, Goodfellow M, editor. Nucleic acid techniques in bacterial systematics. New York: John Wiley & Sons; 1991. p. 115–75.

  37. 37.

    Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Edgar RC. UCHIME2: improved chimera prediction for amplicon sequencing. bioRxiv 2016. https://www.biorxiv.org/content/10.1101/074252v1.

  39. 39.

    Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997;14:685–95.

    CAS  PubMed  Google Scholar 

  40. 40.

    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–77.

    CAS  PubMed  Google Scholar 

  42. 42.

    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Pernthaler J, Glockner FO, Schonhuber W, Amann R. Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Methods Microbiol Vol 30. 2001;30:207–26.

    CAS  Google Scholar 

  45. 45.

    Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, et al. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 2003;31:442–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Rivas-Lamelo S, Benzerara K, Lefèvre CT, Jézéquel D, Menguy N, Viollier E, et al. Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin. Geochem Perspect Lett. 2017;5:35–41.

    Google Scholar 

  47. 47.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl. 2014;30:2114–20.

    CAS  Google Scholar 

  48. 48.

    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    CAS  PubMed  Google Scholar 

  49. 49.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Belkhou R, Stanescu S, Swaraj S, Besson A, Ledoux M, Hajlaoui M, et al. HERMES: a soft X-ray beamline dedicated to X-ray microscopy. J Synchrotron Radiat. 2015;22:968–79.

    PubMed  Google Scholar 

  51. 51.

    Swaraj S, Belkhou R, Stanescu S, Rioult M, Besson A, Hitchcock AP. Performance of the HERMES beamline at the carbon K-edge. J Phys Conf Ser. 2017;849:012046.

    Google Scholar 

  52. 52.

    Le Nagard L, Zhu X, Yuan H, Benzerara K, Bazylinski DA, Fradin C, et al. Magnetite magnetosome biomineralization in Magnetospirillum magneticum strain AMB-1: A time course study. Chem Geol. 2019;530:119348.

    Google Scholar 

  53. 53.

    Cosmidis J, Benzerara K. Soft x-ray scanning transmission spectro-microscopy. In: Elaine DiMasi, Laurie B. Gower, editors. Biomineralization sourcebook: characterization of biominerals and biomimetic materials. CRC Press; 2014.

  54. 54.

    Lefèvre CT. Genomic insights into the early-diverging magnetotactic bacteria. Environ Microbiol. 2016;18:1–3.

    PubMed  Google Scholar 

  55. 55.

    Benzerara K, Yoon TH, Tyliszczak T, Constantz B, Spormann AM, Brown GE. Scanning transmission X-ray microscopy study of microbial calcification. Geobiology. 2004;2:249–59.

    Google Scholar 

  56. 56.

    Michard G, Viollier E, Jézéquel D, Sarazin G. Geochemical study of a crater lake: Pavin Lake, France — Identification, location and quantification of the chemical reactions in the lake. Chem Geol. 1994;115:103–15.

    CAS  Google Scholar 

  57. 57.

    Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Cai H, Wang Y, Xu H, Yan Z, Jia B, Majid Maszenan A, et al. Niveispirillum cyanobacteriorum sp. nov., a nitrogen-fixing bacterium isolated from cyanobacterial aggregates in a eutrophic lake. Int J Syst Evol Microbiol. 2015;65:2537–41.

    CAS  PubMed  Google Scholar 

  59. 59.

    Zhang D, Yang H, Zhang W, Huang Z, Liu S-J. Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol. 2003;53:1111–4.

    CAS  PubMed  Google Scholar 

  60. 60.

    Chung EJ, Park TS, Kim KH, Jeon CO, Lee H-I, Chang W-S, et al. Nitrospirillum irinus sp. nov., a diazotrophic bacterium isolated from the rhizosphere soil of Iris and emended description of the genus Nitrospirillum. Antonie Van Leeuwenhoek. 2015;108:721–9.

    CAS  PubMed  Google Scholar 

  61. 61.

    Bashan Y, Holguin G, de-Bashan LE. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol. 2004;50:521–77.

    CAS  PubMed  Google Scholar 

  62. 62.

    Guo Q, Zhou Z, Zhang L, Zhang C, Chen M, Wang B, et al. Skermanella pratensis sp. nov., isolated from meadow soil, and emended description of the genus Skermanella. Int J Syst Evol Microbiol. 2020;70:1605–9.

    PubMed  Google Scholar 

  63. 63.

    Lefèvre CT, Bazylinski DA. Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev. 2013;77:497–526.

    PubMed  PubMed Central  Google Scholar 

  64. 64.

    Lin W, Bazylinski DA, Xiao T, Wu L-F, Pan Y. Life with compass: diversity and biogeography of magnetotactic bacteria. Environ Microbiol. 2014;16:2646–58.

    CAS  PubMed  Google Scholar 

  65. 65.

    Bazylinski DA, Dean AJ, Williams TJ, Long LK, Middleton SL, Dubbels BL. Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol. 2004;182:373–87.

    CAS  PubMed  Google Scholar 

  66. 66.

    Schultheiss D, Handrick R, Jendrossek D, Hanzlik M, Schüler D. The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense. J Bacteriol. 2005;187:2416–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Lefèvre CT, Bernadac A, Yu-Zhang K, Pradel N, Wu L-F. Isolation and characterization of a magnetotactic bacterial culture from the Mediterranean Sea. Environ Microbiol. 2009;11:1646–57.

    PubMed  Google Scholar 

  68. 68.

    Qian X-X, Liu J, Menguy N, Li J, Alberto F, Teng Z, et al. Identification of novel species of marine magnetotactic bacteria affiliated with Nitrospirae phylum. Environ Microbiol Rep. 2019;11:330–7.

    CAS  PubMed  Google Scholar 

  69. 69.

    Lefèvre CT, Frankel RB, Abreu F, Lins U, Bazylinski DA. Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ Microbiol. 2011;13:538–49.

    PubMed  Google Scholar 

  70. 70.

    Cox BL, Popa R, Bazylinski DA, Lanoil B, Douglas S, Belz A, et al. Organization and elemental analysis of P-, S-, and Fe-rich inclusions in a population of freshwater magnetococci. Geomicrobiol J. 2002;19:387–406.

    CAS  Google Scholar 

  71. 71.

    Byrne ME, Ball DA, Guerquin-Kern J-L, Rouiller I, Wu T-D, Downing KH, et al. Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes. Proc Natl Acad Sci USA. 2010;107:12263–8.

    CAS  PubMed  Google Scholar 

  72. 72.

    Keim CN, Solórzano G, Farina M, Lins U. Intracellular inclusions of uncultured magnetotactic bacteria. Int Microbiol J Span Soc Microbiol. 2005;8:111–7.

    CAS  Google Scholar 

  73. 73.

    Schulz-Vogt HN, Pollehne F, Jürgens K, Arz HW, Beier S, Bahlo R, et al. Effect of large magnetotactic bacteria with polyphosphate inclusions on the phosphate profile of the suboxic zone in the Black Sea. ISME J. 2019;13:1198–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Blondeau M, Benzerara K, Ferard C, Guigner J-M, Poinsot M, Coutaud M, et al. Impact of the cyanobacterium Gloeomargarita lithophora on the geochemical cycles of Sr and Ba. Chem Geol. 2018;483:88–97.

    CAS  Google Scholar 

  75. 75.

    Anbu P, Kang C-H, Shin Y-J, So J-S. Formations of calcium carbonate minerals by bacteria and its multiple applications. Springerplus. 2016;5:250.

    PubMed  PubMed Central  Google Scholar 

  76. 76.

    Cam N, Benzerara K, Georgelin T, Jaber M, Lambert J-F, Poinsot M, et al. Cyanobacterial formation of intracellular Ca-carbonates in undersaturated solutions. Geobiology. 2018;16:49–61.

    CAS  PubMed  Google Scholar 

  77. 77.

    Toro-Nahuelpan M, Müller FD, Klumpp S, Plitzko JM, Bramkamp M, Schüler D. Segregation of prokaryotic magnetosomes organelles is driven by treadmilling of a dynamic actin-like MamK filament. BMC Biol. 2016;14:88.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Toro-Nahuelpan M, Giacomelli G, Raschdorf O, Borg S, Plitzko JM, Bramkamp M, et al. MamY is a membrane-bound protein that aligns magnetosomes and the motility axis of helical magnetotactic bacteria. Nat Microbiol. 2019;4:1978–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Lefèvre CT, Bennet M, Klumpp S, Faivre D. Positioning the flagellum at the center of a dividing cell to combine bacterial division with magnetic polarity. mBio. 2015;6:e02286.

    PubMed  PubMed Central  Google Scholar 

  80. 80.

    Judd EM, Ryan KR, Moerner WE, Shapiro L, McAdams HH. Fluorescence bleaching reveals asymmetric compartment formation prior to cell division in Caulobacter. Proc Natl Acad Sci USA. 2003;100:8235–40.

    CAS  PubMed  Google Scholar 

  81. 81.

    Klumpp S, Lefèvre CT, Bennet M, Faivre D. Swimming with magnets: From biological organisms to synthetic devices. Phys Rep. 2019;789:1–54.

    Google Scholar 

  82. 82.

    Lefèvre CT, Abreu F, Lins U, Bazylinski DA. Nonmagnetotactic multicellular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior. Appl Environ Microbiol. 2010;76:3220–7.

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Walsby AE. Gas vesicles. Microbiol Rev. 1994;58:94–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Walsby A. The properties and buoyancy-providing role of gas vacuoles in trichodesmium ehrenberg. Br Phycol J. 1978;13:103–16.

    Google Scholar 

  85. 85.

    Monteil CL, Menguy N, Prévéral S, Warren A, Pignol D, Lefèvre CT. Accumulation and dissolution of magnetite crystals in a magnetically responsive ciliate. Appl Environ Microbiol. 2018;84:e02865-17.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Monteil CL, Vallenet D, Menguy N, Benzerara K, Barbe V, Fouteau S, et al. Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat Microbiol. 2019;4:1088–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Leão P, Nagard LL, Yuan H, Cypriano J, Silva‐Neto ID, Bazylinski DA, et al. Magnetosome magnetite biomineralization in a flagellated protist: evidence for an early evolutionary origin for magnetoreception in eukaryotes. Environ Microbiol. 2020;22:1495–506.

    PubMed  Google Scholar 

  88. 88.

    Isambert A, Menguy N, Larquet E, Guyot F, Valet J-P. Transmission electron microscopy study of magnetites in a freshwater population of magnetotactic bacteria. Am Miner. 2007;92:621–30.

    CAS  Google Scholar 

  89. 89.

    Taoka A, Kondo J, Oestreicher Z, Fukumori Y. Characterization of uncultured giant rod-shaped magnetotactic Gammaproteobacteria from a freshwater pond in Kanazawa, Japan. Microbiol Read Engl. 2014;160:2226–34.

    CAS  Google Scholar 

  90. 90.

    Monteil CL, Perrière G, Menguy N, Ginet N, Alonso B, Waisbord N, et al. Genomic study of a novel magnetotactic Alphaproteobacteria uncovers the multiple ancestry of magnetotaxis. Environ Microbiol. 2018;20:4415–30.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the CNRS: “Programme national Ecosphère Continentale et Côtière (EC2CO)” (BACCARAT2 – N°13068) and the French National Research Agency (SIGMAG: ANR-18-CE31-0003 and PHOSTORE: ANR-19-CE01-0005-02). CCB was supported by the Frontières de l’Innovation en Recherche et Éducation (FIRE) Ph.D. programme from the Centre de Recherches Interdisciplinaires (CRI). Support for the confocal microscope was provided by the Région Provence Alpes Côte d’Azur, Conseil Général des Bouches du Rhône, French Ministry of Research, CNRS and Commissariat à l’Energie Atomique et aux Energies Alternatives. We acknowledge the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) at CEA Cadarache for the access of the transmission electron microscope Tecnai G2 BioTWIN. We are grateful to the INRA MIGALE bioinformatics platform (http://migale.jouy.inra.fr) for providing computational resources. We thank Stefan Stanescu and Rachid Belkhou for user support on the HERMES STXM beamline at Synchrotron SOLEIL, Fériel Skouri-Panet and Cynthia Travert for user support on the IMPMC Biology facility, Jean-Michel Guigner for user support on the IMPMC TEM facility and Imène Esteve, Béatrice Doisneau and Stéphanie Delbrel for user support on the IMPMC SEM facility. We are grateful to the genomic platform at the Institut de Microbiologie de la Méditerranée (IMM) and to Yann Denis for helpful advices. We thank Alexis Canette from the Service de Microscopie Electronique at the IBPS for his help in CEMOVIS sample preparation. We thank Maria Pilar Asta and Alejandro Fernandez-Martinez from ISTerre, University Grenoble Alpes, for providing a reference ACC sample.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christopher T. Lefevre.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Monteil, C.L., Benzerara, K., Menguy, N. et al. Intracellular amorphous Ca-carbonate and magnetite biomineralization by a magnetotactic bacterium affiliated to the Alphaproteobacteria. ISME J (2020). https://doi.org/10.1038/s41396-020-00747-3

Download citation

Search