The release of a distinct cell type from swarm colonies facilitates dissemination of Vibrio parahaemolyticus in the environment

Abstract

Bacteria experience changes in their environment and have developed various strategies to respond accordingly. To accommodate environmental changes, certain bacteria differentiate between specialized cell types. Vibrio parahaemolyticus is a marine bacterium, a worldwide human pathogen and the leading agent of seafood-borne gastroenteritis. It exists as swimmer or swarmer cells, specialized for life in liquid and on solid environments, respectively. Swarmer cells are characteristically highly elongated—a morphology important for swarming behavior. When attached to surfaces it forms swarm colonies, however, it is not known how cells within swarming populations respond to changes in the external milieu and how its distinct life cycle influences its ecological dissemination. The worldwide distribution of V. parahaemolyticus accentuates the need for understanding the factors contributing to its dissemination. Here we determine the stage-wise development of swarm colonies and show how the swarm colony architecture fluctuates with changing environmental conditions. Swarm colonies act as a continuous source of cells that are released from the swarm colony into the environment. Surprisingly, the cell length distribution of released cells was very homogenous and almost no long cells were detected, indicating that swarmer cells are not released into the liquid environment but stay surface attached during flooding. Released cells comprise a distinct cell type that is morphologically optimized for swimming behavior and is capable of spreading in the liquid environment and attach to new surfaces. Release of this distinct cell type facilitates the dissemination of V. parahaemolyticus in the environment and likely influences the ecology of this bacterium.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    McCarter L. The multiple identities of Vibrio parahaemolyticus. J Mol Microbiol Biotechnol. 1999;1:51–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Letchumanan V, Chan KG, Lee LH. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front Microbiol. 2014;5:705.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kaneko T, Colwell RR. Adsorption of Vibrio parahaemolyticus onto chitin and copepods. Appl Environ Microbiol. 1975;29:269–74.

    CAS  Google Scholar 

  4. 4.

    Di DYW, Lee A, Jang J, Han D, Hur H-G. Season-specific occurrence of potentially pathogenic Vibrio spp. on the southern coast of South Korea. Appl Environ Microbiol. 2017;83:e02680–16.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Kaneko T, Colwell RR. Ecology of Vibrio parahaemolyticus in Chesapeake Bay. J Bacteriol. 1973;113:24–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Gamble MD, Lovell CR. Infaunal burrows are enrichment zones for Vibrio parahaemolyticus. Appl Environ Microbiol. 2011;77:3703–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Ceccarelli D, Hasan NA, Huq A, Colwell RR. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front Cell Infect Microbiol. 2013;3:Article 97.

  8. 8.

    McCarter L, Silverman M. Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol Microbiol. 1990;4:1057–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    McCarter LL. Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol. 2004;7:18–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    McCarter LL. Bacterial acrobatics on a surface: swirling packs, collisions, and reversals during swarming. J Bacteriol. 2010;192:3246–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Gode-Potratz CJ, Kustusch RJ, Breheny PJ, Weiss DS, McCarter LL. Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol Microbiol. 2011;79:240–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Makino K, Oshima K, Kurokawa K, Yokoyama K. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet. 2003;361:743–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Belas MR, Colwell RR. Scanning electron microscope observation of the swarming phenomenon of Vibrio parahaemolyticus. J Bacteriol. 1982;150:956–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Roth D, Finkelshtein A, Ingham C, Helman Y, Sirota-Madi A, Brodsky L, et al. Identification and characterization of a highly motile and antibiotic refractory subpopulation involved in the expansion of swarming colonies of Paenibacillus vortex. Environ Microbiol. 2013;15:2532–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Muraleedharan S, Freitas C, Mann P, Glatter T, Ringgaard S. A cell length-dependent transition in MinD-dynamics promotes a switch in division-site placement and preservation of proliferating elongated Vibrio parahaemolyticus swarmer cells. Mol Microbiol. 2018;109:365–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Be’er A, Strain SK, Hernández RA, Ben-Jacob E, Florin E-L. Periodic reversals in Paenibacillus dendritiformis swarming. J Bacteriol. 2013;195:2709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Harshey RM, Partridge JD. Shelter in a swarm. J Mol Biol. 2015;427:3683–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Böttcher T, Elliott HL, Clardy J. Dynamics of snake-like swarming behavior of Vibrio alginolyticus. Biophys J. 2016;110:981–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Rauprich O, Matsushita M, Weijer CJ, F Siegert, Esipov SE, Shapiro JA. Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol. 1996;178:6525–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Little K, Austerman J, Zheng J, Gibbs KA. Cell shape and population migration are distinct steps of Proteus mirabilis swarming that are decoupled on high-percentage agar. J Bacteriol. 2019;201:e00726–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Jones JL, Kinsey TP, Johnson LW, Porso R, Friedman B, Curtis M, et al. Effects of intertidal harvest practices on levels of Vibrio parahaemolyticus and Vibrio vulnificus bacteria in oysters. Appl Environ Microbiol. 2016;82:4517–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Nordstrom JL, Kaysner CA, Blackstone GM, Vickery MCL, Bowers JC, DePaola A. Effect of intertidal exposure on Vibrio parahaemolyticus levels in Pacific Northwest Oysters. J Food Prot. 2016;67:2178–82.

    Article  Google Scholar 

  23. 23.

    Miller VL, Mekalanos JJ. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol. 1988;170:2575–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Donnenberg MS, Kaper JB. Construction of an Eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun. 1991;59:4310–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Heering J, Alvarado A, Ringgaard S. Induction of cellular differentiation and single cell imaging of Vibrio parahaemolyticus swimmer and swarmer cells. J Vis Exp. 2017;123:e55842.

  26. 26.

    Heering J, Ringgaard S. Differential localization of chemotactic signaling arrays during the lifecycle of Vibrio parahaemolyticus. Front Microbiol. 2016;7:1767.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Ringgaard S, Hubbard T, Mandlik A, Davis BM, Waldor MK. RpoS and quorum sensing control expression and polar localization of Vibrio cholerae chemotaxis cluster III proteins in vitro and in vivo. Mol Microbiol. 2015;97:660–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Salomon D, Gonzalez H, Updegraff BL, Orth K. Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from System 2. PLoS ONE. 2013;8:e61086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol. 2006;188:7344–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, et al. Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol. 2003;185:4585–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Morgan R, Kohn S, Hwang SH, Hassett DJ, Sauer K. BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol. 2006;188:7335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Thormann KM, Saville RM, Shukla S, Spormann AM. Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J Bacteriol. 2005;187:1014–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Singh PK, Bartalomej S, Hartmann R, Jeckel H, Vidakovic L, Nadell CD, et al. Vibrio cholerae combines individual and collective sensing to trigger biofilm dispersal. Curr Biol. 2017;27:3359. e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Miyata ST, Kitaoka M, Brooks TM, McAuley SB, Pukatzki S. Vibrio cholerae requires the type VI secretion system virulence factor vasx to kill Dictyostelium discoideum. Infect Immun. 2011;79:2941–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, Hood RD, et al. Burkholderia type vi secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 2010;6:e100168.

  36. 36.

    Hood RD, Singh P, Hsu FS, Güvener T, Carl MA, Trinidad RRS, et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 2010;7:25–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA. 2010;107:19520–4.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Borgeaud S, Metzger LC, Scrinari T, Blokesch M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 2015;347:63–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Marks LR, Davidson BA, Knight PR, Hakansson AP. Interkingdom signaling induces Streptococcus pneumoniae biofilm dispersion and transition from asymptomatic colonization to disease. MBio. 2013;4:e00438–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Tran L, Nunan L, Redman RM, Mohney LL, Pantoja CR, Fitzsimmons K, et al. Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Organ. 2013;105:45–55.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Alberti L, Harshey RM. Differentiation of Serratia marcescens 274 into swimmer and swarmer cells. J Bacteriol. 1990;172:4322–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Kirov SM, Tassell BC, Semmler ABT, Donovan LAO, Rabaan AA, Shaw JG. Lateral flagella and swarming motility in Aeromonas species. J Bacteriol. 2002;184:547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Harshey RM. Bees aren’t the only ones: swarming in Gram-negative bacteria. Mol Microbiol. 1994;13:389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Rather PN. Swarmer cell differentiation in Proteus mirabilis. Environ Microbiol. 2005;7:1065–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Sar N, McCarter L, Simon M, Silverman M. Chemotactic control of the two flagellar systems of Vibrio parahaemolyticus. J Bacteriol. 1990;172:334–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Böer SI, Heinemeyer E-A, Luden K, Erler R, Gerdts G, Janssen F, et al. Temporal and spatial distribution patterns of potentially pathogenic Vibrio spp. at recreational beaches of the German North Sea. Micro Ecol. 2013;65:1052–67.

    Article  Google Scholar 

  47. 47.

    Hornstrup MK, Gahrn-Hansen B. Extraintestinal infections caused by Vibrio parahæmolyticus and Vibrio alginolyticus in a danish county, 1987-1992. Scand J Infect Dis. 1993;25:735–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Sabir M, Ennaji Moulay M, Cohen N. Vibrio alginolyticus: an emerging pathogen of foodborne diseases. Int J Sci Technol. 2013;2:302–9.

    Google Scholar 

Download references

Acknowledgements

We thank Kathrin Schirner for thoughtful comments on the manuscript and very helpful suggestions for experiments. We thank Jan Heering for construction of plasmid pJH047. This work was supported by the Max Planck Society (SR).

Author information

Affiliations

Authors

Contributions

CF carried out the majority of the experimental work. SR conceived the study. CF and SR designed the research and experiments and analyzed the data. CF, TG, and SR performed proteomics analysis. SR and CF wrote the manuscript.

Corresponding author

Correspondence to Simon Ringgaard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Freitas, C., Glatter, T. & Ringgaard, S. The release of a distinct cell type from swarm colonies facilitates dissemination of Vibrio parahaemolyticus in the environment. ISME J 14, 230–244 (2020). https://doi.org/10.1038/s41396-019-0521-x

Download citation

Further reading

Search