Abstract

Mixotrophy, or the ability to acquire carbon from both auto- and heterotrophy, is a widespread ecological trait in marine protists. Using a metabarcoding dataset of marine plankton from the global ocean, 318,054 mixotrophic metabarcodes represented by 89,951,866 sequences and belonging to 133 taxonomic lineages were identified and classified into four mixotrophic functional types: constitutive mixotrophs (CM), generalist non-constitutive mixotrophs (GNCM), endo-symbiotic specialist non-constitutive mixotrophs (eSNCM), and plastidic specialist non-constitutive mixotrophs (pSNCM). Mixotrophy appeared ubiquitous, and the distributions of the four mixotypes were analyzed to identify the abiotic factors shaping their biogeographies. Kleptoplastidic mixotrophs (GNCM and pSNCM) were detected in new zones compared to previous morphological studies. Constitutive and non-constitutive mixotrophs had similar ranges of distributions. Most lineages were evenly found in the samples, yet some of them displayed strongly contrasted distributions, both across and within mixotypes. Particularly divergent biogeographies were found within endo-symbiotic mixotrophs, depending on the ability to form colonies or the mode of symbiosis. We showed how metabarcoding can be used in a complementary way with previous morphological observations to study the biogeography of mixotrophic protists and to identify key drivers of their biogeography.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Caron DA, Countway PD, Jones AC, Kim DY, Schnetzer A. Marine protistan diversity. Annu Rev Mar Sci. 2012;4:467–93.

  2. 2.

    de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605–605.

  3. 3.

    Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, et al. CBOL Protist working group: Barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLOS Biol. 2012;10:e1001419.

  4. 4.

    Caron DA, Alexander H, Allen AE, Archibald JM, Armbrust EV, Bachy C, et al. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat Rev Microbiol. 2017;15:6–20.

  5. 5.

    Keeling PJ, Campo J del. Marine protists are not just big bacteria. Curr Biol. 2017;27:R541–49.

  6. 6.

    Caron DA. Mixotrophy stirs up our understanding of marine food webs. Proc Natl Acad Sci. 2016;113:2806–08.

  7. 7.

    Le Quéré C, Harrison SP, Colin Prentice I, Buitenhuis ET, Aumont O, Bopp L, et al. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob Change Biol. 2005;11:2016–40.

  8. 8.

    Amacher J, Neuer S, Anderson I, Massana R. Molecular approach to determine contributions of the protist community to particle flux. Deep Sea Res Part Oceanogr Res Pap. 2009;56:2206–15.

  9. 9.

    Stoecker DK, Hansen PJ, Caron DA, Mitra A. Mixotrophy in the marine plankton. Annu Rev Mar Sci. 2017;9:311–5.

  10. 10.

    Flynn KJ, Stoecker DK, Mitra A, Raven JA, Glibert PM, Hansen PJ, et al. Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res. 2013;35:3–11.

  11. 11.

    Mitra A, Flynn KJ, Tillmann U, Raven JA, Caron D, Stoecker DK, et al. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition: Incorporation of diverse mixotrophic strategies. Protist. 2016;167:106–120.

  12. 12.

    Esteban GF, Fenchel T, Finlay BJ. Mixotrophy in ciliates. Protist. 2010;161:621–41.

  13. 13.

    Selosse M-A, Charpin M, Not F, Jeyasingh P. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol Lett. 2017;20:246–63.

  14. 14.

    Ducklow HW, Steinberg DK, Buesseler KO. Upper ocean carbon export and the biological pump. Oceanogr-Wash DC-Oceanogr Soc. 2001;14:50–8.

  15. 15.

    Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature. 2016;532:465–70.

  16. 16.

    Aumont O, Ethé C, Tagliabue A, Bopp L, Gehlen M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci Model Dev. 2015;8:2465–513.

  17. 17.

    Follows MJ, Dutkiewicz S, Grant S, Chisholm SW. Emergent biogeography of microbial communities in a model. Ocean Sci. 2007;315:1843–46.

  18. 18.

    Reed DC, Algar CK, Huber JA, Dick GJ. Gene-centric approach to integrating environmental genomics and biogeochemical models. Proc Natl Acad Sci. 2014;111:1879–84.

  19. 19.

    Johnson MD. Acquired phototrophy in ciliates: A review of cellular interactions and structural adaptations. J Eukaryot Microbiol. 2011;58:185–195.

  20. 20.

    Stoecker DK, Johnson MD, de Vargas C, Not F. Acquired phototrophy in aquatic protists. Aquat Microb Ecol. 2009;57:279–310.

  21. 21.

    Flynn KJ, Mitra A. Building the ‘perfect beast’: modelling mixotrophic plankton. J Plankton Res. 2009;31:965–92.

  22. 22.

    Ward BA, Follows MJ. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc Natl Acad Sci. 2016;113:2958–63.

  23. 23.

    Ghyoot C, Flynn KJ, Mitra A, Lancelot C, Gypens N. Modeling plankton mixotrophy: A mechanistic model consistent with the shuter-type biochemical approach. Front Ecol Evol. 2017;5:78.

  24. 24.

    Ward BA, Dutkiewicz S, Barton AD, Follows MJ. Biophysical aspects of resource acquisition and competition in algal mixotrophs. Am Nat. 2011;178:98–112.

  25. 25.

    Berge T, Chakraborty S, Hansen PJ, Andersen KH. Modeling succession of key resource-harvesting traits of mixotrophic plankton. ISME J. 2017;11:212–23.

  26. 26.

    Mitra A, Flynn KJ, Burkholder JM, Berge T, Calbet A, Raven JA, et al. The role of mixotrophic protists in the biological carbon pump. Biogeosciences. 2014;11:995–1005.

  27. 27.

    Leles SG, Mitra A, Flynn KJ, Stoecker DK, Hansen PJ, Calbet A, et al. Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance. Proc R Soc B Biol Sci. 2017;284:20170664.

  28. 28.

    Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.

  29. 29.

    Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK. Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol. 2012;27:233–43.

  30. 30.

    Bittner L, Gobet A, Audic S, Romac S, Egge ES, Santini S, et al. Diversity patterns of uncultured Haptophytes unravelled by pyrosequencing in Naples Bay. Mol Ecol. 2013;22:87–101.

  31. 31.

    Karsenti E, Acinas SG, Bork P, Bowler C, De Vargas C, Raes J, et al. A holistic approach to marine eco-systems biology. PLoS Biol. 2011;9:e1001177.

  32. 32.

    Alberti A, Poulain J, Engelen S, Labadie K, Romac S, Ferrera I, et al. Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition. Sci Data. 2017;4:170093.

  33. 33.

    Pesant S, Not F, Picheral M, Kandels-Lewis S, Bescot NL, Gorsky G, et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data. 2015;2:150023.

  34. 34.

    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucl Acids Res. 2013;41:D597–604.

  35. 35.

    Granéli E, Edvardsen B, Roelke DL, Hagström JA. The ecophysiology and bloom dynamics of Prymnesium spp. Harmful Algae. 2012;14:260–70.

  36. 36.

    Liu H, Aris-Brosou S, Probert I, de Vargas C. A time line of the environmental genetics of the haptophytes. Mol Biol Evol. 2010;27:161–176.

  37. 37.

    Hansen P, Moldrup M, Tarangkoon W, Garcia-Cuetos L, Moestrup ø. Direct evidence for symbiont sequestration in the marine red tide ciliate Mesodinium rubrum. Aquat Microb Ecol. 2012;66:63–75.

  38. 38.

    Agatha S, Strüder-Kypke MC, Beran A, Lynn DH. Pelagostrobilidium neptuni (Montagnes and Taylor, 1994) and Strombidium biarmatum nov. spec. (Ciliophora, Oligotrichea): phylogenetic position inferred from morphology, ontogenesis, and gene sequence data. Eur J Protistol. 2005;41:65–83.

  39. 39.

    Jones HLJ, Leadbeater BSC, Green JC. Mixotrophy in marine species of Chrysochromulina (Prymnesiophyceae): ingestion and digestion of a small green flagellate. J Mar Biol Assoc U K. 1993;73:283.

  40. 40.

    Johnsen G, Dalløkken R, Eikrem W, Legrand C, Aure J, Skjoldal HR. Eco-physiology bio-optics and toxicity of the ichtyotoxic Chrysochromulina leadbeateri (Prymnesiophyceae). J Phycol. 1999;35:1465–76.

  41. 41.

    Rhodes L, Burke B. Morphology and growth characteristics of Chrysochromulina species (Haptophyceae=Prymnesiophyceae) isolated from New Zealand coastal waters. N Z J Mar Freshw Res. 1996;30:91–103.

  42. 42.

    Hemleben C, Be AWH, Anderson OR, Tuntivate S. Test morphology, organic layers and chamber formation of the planktonic foraminifer Globorotalia menardii (d’Orbigny). J Foraminifer Res. 1977;7:1–25.

  43. 43.

    Fehrenbacher JS, Spero HJ, Russell AD. Observations of living non-spinose planktic foraminifers Neogloboquadrina dutertrei and N. pachyderma from specimens grown in culture. AGU Fall Meet Abstr. 2011;41:PP41A-1724.

  44. 44.

    Spero HJ, Parker SL. Photosynthesis in the symbiotic planktonic foraminifer Orbulina universa, and its potential contribution to oceanic primary productivity. J Foraminifer Res. 1985;15:273–81.

  45. 45.

    Faber WW, Anderson OR, Caron DA. Algal-foraminiferal symbiosis in the planktonic foraminifer Globigerinella aequilateralis; II, Effects of two symbiont species on foraminiferal growth and longevity. J Foraminifer Res. 1989;19:185–93.

  46. 46.

    Kuile Bter, Erez J. In situ growth rate experiments on the symbiont-bearing foraminifera Amphistegina lobifera and Amphisorus hemprichii. J Foraminifer Res. 1984;14:262–76.

  47. 47.

    Biard T, Bigeard E, Audic S, Poulain J, Gutierrez-Rodriguez A, Pesant S, et al. Biogeography and diversity of Collodaria (Radiolaria) in the global ocean. ISME J. 2017;11:1331–44.

  48. 48.

    Ardyna M, Ovidio F, Speich S, Leconte J, Chaffron S, Audic S, et al. Environmental context of all samples from the Tara OceansExpedition (2009–2013), about mesoscale features at the sampling location. 2017. PANGAEA.

  49. 49.

    Legendre P, Legendre LFJ. Numerical ecology. Elsevier Science, Amsterdam; 1998;197:333.

  50. 50.

    Escoufier Y. Le traitement des variables vectorielles. Biometrics. 1973;29:751.

  51. 51.

    Borcard D, Gillet F, Legendre P. Numerical ecology with R. Springer, New York; 2011;176:177.

  52. 52.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2017.

  53. 53.

    Longhurst AR. Ecological geography of the sea. Academic Press, San Diego;1998.

  54. 54.

    Decelle J, Probert I, Bittner L, Desdevises Y, Colin S, de Vargas C, et al. An original mode of symbiosis in open ocean plankton. Proc Natl Acad Sci. 2012;109:18000–5.

  55. 55.

    Le Bescot N, Mahé F, Audic S, Dimier C, Garet M-J, Poulain J, et al. Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environ Microbiol. 2016;18:609–26.

  56. 56.

    Wu S, Xiong J, Yu Y. Taxonomic resolutions based on 18S rRNA genes: A case study of subclass Copepoda. PLoS ONE. 2015;10:e0131498.

  57. 57.

    Brown EA, Chain FJJ, Crease TJ, MacIsaac HJ, Cristescu ME. Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities? Ecol Evol. 2015;5:2234–51.

  58. 58.

    Egge E, Bittner L, Andersen T, Audic S, de Vargas C, Edvardsen B. 454 pyrosequencing to describe microbial eukaryotic community composition, diversity and relative abundance: a test for marine haptophytes. PloS ONE. 2013;8:e74371.

  59. 59.

    Gilbert JA, Field D, Swift P, Thomas S, Cummings D, Temperton B, et al. The taxonomic and functional diversity of microbes at a temperate coastal site: A ‘multi-omic’ study of seasonal and diel temporal variation. PLoS ONE. 2010;5:e15545.

  60. 60.

    DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard N-U, et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science. 2006;311:496–503.

  61. 61.

    Arenovski AL, Lim EL, Caron DA. Mixotrophic nanoplankton in oligotrophic surface waters of the Sargasso Sea may employ phagotrophy to obtain major nutrients. J Plankton Res. 1995;17:801–20.

  62. 62.

    Safi KA, Hall JA. Mixotrophic and heterotrophic nanoflagellate grazing in the convergence zone east of New Zealand. Aquat Microb Ecol. 1999;20:83–93.

  63. 63.

    Moorthi S, Caron DA, Gast RJ, Sanders RW. Mixotrophy: a widespread and important ecological strategy for planktonic and sea-ice nanoflagellates in the Ross Sea, Antarctica. Aquat Microb Ecol. 2009;54:269–77.

  64. 64.

    Unrein F, Gasol JM, Massana R. Dinobryon faculiferum (Chrysophyta) in coastal Mediterranean seawater: presence and grazing impact on bacteria. J Plankton Res. 2010;32:559–64.

  65. 65.

    Sanders RW, Gast RJ. Bacterivory by phototrophic picoplankton and nanoplankton in Arctic waters. FEMS Microbiol Ecol. 2012;82:242–53.

  66. 66.

    Calbet A, Martínez RA, Isari S, Zervoudaki S, Nejstgaard JC, Pitta P, et al. Effects of light availability on mixotrophy and microzooplankton grazing in an oligotrophic plankton food web: Evidences from a mesocosm study in Eastern Mediterranean waters. J Exp Mar Biol Ecol. 2012;424–425:66–77.

  67. 67.

    Dolan JR, PÉrez MT. Costs benefits and characteristics of mixotrophy in marine oligotrichs. Freshw Biol. 2000;45:227–38.

  68. 68.

    Biard T, Stemmann L, Picheral M, Mayot N, Vandromme P, Hauss H, et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature. 2016;532:504–7.

  69. 69.

    Probert I, Siano R, Poirier C, Decelle J, Biard T, Tuji A, et al. Brandtodinium gen. nov. and B. nutricula comb. Nov. (Dinophyceae), a dinoflagellate commonly found in symbiosis with polycystine radiolarians. J Phycol. 2014;50:388–99.

  70. 70.

    Stec KF, Caputi L, Buttigieg PL, D’Alelio D, Ibarbalz FM, Sullivan MB, et al. Modelling plankton ecosystems in the meta-omics era. Are we ready? Mar Genom. 2017;32:1–17.

  71. 71.

    Dick GJ. Embracing the mantra of modellers and synthesizing omics, experiments and models. Environ Microbiol Rep. 2017;9:18–20.

  72. 72.

    Mock T, Daines SJ, Geider R, Collins S, Metodiev M, Millar AJ, et al. Bridging the gap between omics and earth system science to better understand how environmental change impacts marine microbes. Glob Change Biol. 2016;22:61–75.

  73. 73.

    Coles VJ, Stukel MR, Brooks MT, Burd A, Crump BC, Moran MA, et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science. 2017;358:1149–54.

  74. 74.

    Shuter B. A model of physiological adaptation in unicellular algae. J Theor Biol. 1979;78:519–52.

  75. 75.

    Millette NC, Grosse J, Johnson WM, Jungbluth MJ, Suter EA. Hidden in plain sight: The importance of cryptic interactions in marine plankton. Limnol Oceanogr Lett. 2018;3:341–56.

  76. 76.

    Johnson MD, Oldach D, Delwiche CF, Stoecker DK. Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature. 2007;445:426–8.

  77. 77.

    Schoener DM, McManus GB. Plastid retention, use, and replacement in a kleptoplastidic ciliate. Aquat Microb Ecol. 2012;67:177–87.

Download references

Acknowledgements

We would like to particularly thank Stéphane Pesant and Stéphane Audic for their work on making Tara Oceans datasets available. We also thank John Dolan (CNRS, LOV, Villefranche-sur-mer, France), Miguel Mendez-Sandin (Sorbonne Université, Station Biologique de Roscoff, France), and Wei-Ting Chen (National Taiwan Ocean University, Taiwan) for their essential help during the construction of the mixotrophic lineages set. We also thank Florentin Constancias for his help on the metabarcodes clustering tests conducted. Finally, we thank the three anonymous reviewers for their very constructive comments. This article is contribution number #84 of Tara Oceans. For the Tara Oceans expedition, we thank the commitment of the CNRS (in particular, Groupement de Recherche GDR3280), European Molecular Biology Laboratory (EMBL), Genoscope/CEA, VIB, Stazione Zoologica Anton Dohrn, UNIMIB, Fund for Scientific Research—Flanders, Rega Institute, KU Leuven, The French Ministry of Research. We also thank the support and commitment of Agnès b. and Etienne Bourgois, the Veolia Environment Foundation, Région Bretagne, Lorient Agglomération, World Courier, Illumina, the EDF Foundation, FRB, the Prince Albert II de Monaco Foundation, the Tara schooner and its captains and crew. We are also grateful to the French Ministry of Foreign Affairs for supporting the expedition and to the countries who graciously granted sampling permissions. Tara Oceans would not exist without continuous support from 23 institutes (http://oceans.taraexpeditions.org).

Funding

This work was funded by the FunOmics project of the French national program EC2CO-LEFE of CNRS and by the ModelOmics project of the Émergence program of Sorbonne Université, and partly supported byt the project MEGALADOM, part of the MASTODON program from the MITI, CNRS France. Emile Faure acknowledges a 3-year Ph.D. grant from the “Interface Pour le Vivant” (IPV) doctoral program of Sorbonne Université. SD Ayata ackowledges the CNRS for her sabbatical year as visiting researcher at ISYEB.

Author information

Author notes

  1. These authors contributed equally: Lucie Bittner, Sakina-Dorothée Ayata

Affiliations

  1. Sorbonne Université, CNRS, Laboratoire d’océanographie de Villefranche, LOV, 06230, Villefranche-sur-Mer, France

    • Emile Faure
    •  & Sakina-Dorothée Ayata
  2. Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, CP 50, 57 rue Cuvier, 75005, Paris, France

    • Emile Faure
    • , Anne-Sophie Benoiston
    • , Lucie Bittner
    •  & Sakina-Dorothée Ayata
  3. Sorbonne Université, CNRS, UMR7144 Adaptation and Diversity in Marine Environment (AD2M) Laboratory, Ecology of Marine Plankton team, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France

    • Fabrice Not
  4. Genoscope, Institut de biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Evry, France, 91057, Evry, France

    • Karine Labadie

Authors

  1. Search for Emile Faure in:

  2. Search for Fabrice Not in:

  3. Search for Anne-Sophie Benoiston in:

  4. Search for Karine Labadie in:

  5. Search for Lucie Bittner in:

  6. Search for Sakina-Dorothée Ayata in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Emile Faure.

Supplementary information

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41396-018-0340-5