Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes


Much of the diversity of prokaryotic viruses has yet to be described. In particular, there are no viral isolates that infect abundant, globally significant marine archaea including the phylum Thaumarchaeota. This phylum oxidizes ammonia, fixes inorganic carbon, and thus contributes to globally significant nitrogen and carbon cycles in the oceans. Metagenomics provides an alternative to culture-dependent means for identifying and characterizing viral diversity. Some viruses carry auxiliary metabolic genes (AMGs) that are acquired via horizontal gene transfer from their host(s), allowing inference of what host a virus infects. Here we present the discovery of 15 new genomically and ecologically distinct Thaumarchaeota virus populations, identified as contigs that encode viral capsid and thaumarchaeal ammonia monooxygenase genes (amoC). These viruses exhibit depth and latitude partitioning and are distributed globally in various marine habitats including pelagic waters, estuarine habitats, and hydrothermal plume water and sediments. We found evidence of viral amoC expression and that viral amoC AMGs sometimes comprise up to half of total amoC DNA copies in cellular fraction metagenomes, highlighting the potential impact of these viruses on N cycling in the oceans. Phylogenetics suggest they are potentially tailed viruses and share a common ancestor with related marine Euryarchaeota viruses. This work significantly expands our view of viruses of globally important marine Thaumarchaeota.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Könneke M, Bernhard AE, De La Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005;437:543–6.

  2. 2.

    Könneke M, Schubert DM, Brown PC, Hugler M, Standfest S, Schwander T, et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci USA. 2014;111:8239–44.

  3. 3.

    Walker CB, De La Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci USA. 2010;107:8818–23.

  4. 4.

    Santoro AE, Casciotti KL, Francis CA. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ Microbiol. 2010;12:1989–2006.

  5. 5.

    Beman JM, Popp BN, Francis CA. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J. 2008;2:429–41.

  6. 6.

    Karner MB, Delong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409:507–10.

  7. 7.

    Teira E, Lebaron P, Van Aken H, Herndl GJ. Distribution and activity of Bacteria and Archaea in the deep water masses of the North Atlantic. Limnol Oceanogr. 2006;51:2131–44.

  8. 8.

    Santoro AE, Saito MA, Goepfert TJ, Lamborg CH, Dupont CL, Ditullio GR. Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation. Limnol Oceanogr. 2017;62:1984–2003.

  9. 9.

    Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol. 2013;15:1647–58.

  10. 10.

    Geslin C, Le Romancer M, Erauso G, Gaillard M, Perrot G, Prieur D. PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, “Pyrococcus abyssi”. J Bacteriol. 2003a;185:3888–94.

  11. 11.

    Geslin C, Le Romancer M, Gaillard M, Erauso G, Prieur D. Observation of virus-like particles in high temperature enrichment cultures from deep-sea hydrothermal vents. Res Microbiol. 2003b;154:303–7.

  12. 12.

    Pietila MK, Demina TA, Atanasova NS, Oksanen HM, Bamford DH. Archaeal viruses and bacteriophages: comparisons and contrasts. Trends Microbiol. 2014;22:334–44.

  13. 13.

    Prangishvili D. The wonderful world of archaeal viruses. Annu Rev Microbiol. 2013;67:565–85.

  14. 14.

    Prangishvili D, Forterre P, Garrett RA. Viruses of the archaea: a unifying view. Nat Rev Microbiol. 2006;4:837–48.

  15. 15.

    Hurwitz BL, Ponsero A, Thornton J Jr., U’ren JM. Phage hunters: computational strategies for finding phages in large-scale ‘omics datasets. Virus Res. 2017;244:110–5.

  16. 16.

    Krupovic M, Spang A, Gribaido S, Forterre P, Schleper C. A thaumarchaeal provirus testifies for an ancient association of tailed viruses with archaea. Biochem Soc Trans. 2011;39:82–8.

  17. 17.

    Chow CET, Winget DM, White RA, Hallam SJ, Suttle CA. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions. Front Microbiol. 2015;6:1–15.

  18. 18.

    Labonte JM, Swan BK, Poulos B, Luo HW, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.

  19. 19.

    Ahlgren NA, Chen Y, Needham DM, Parada AE, Sachdeva R, Trinh V, et al. Genome and epigenome of a novel marine Thaumarchaeota strain suggest viral infection, phosphorothioation DNA modification and multiple restriction systems. Environ Microbiol. 2017a;19:2434–52.

  20. 20.

    Ahlgren NA, Ren J, Lu YY, Fuhrman JA, Sun F. Alignment-free d2* oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res. 2017b;45:39–53.

  21. 21.

    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.

  22. 22.

    Stahl DA, De La Torre JR. Physiology and diversity of ammonia-oxidizing archaea. Annu Rev Microbiol. 2012;66:83–101.

  23. 23.

    Hurwitz BL, U’ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol. 2016;31:161–8.

  24. 24.

    Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86–9.

  25. 25.

    Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci USA. 2011;108:E757–64.

  26. 26.

    Edwards RA, Mcnair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev. 2015;40:258–72.

  27. 27.

    Roux S, Enault F, Hurwitz BL.Sullivan MB, VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015a;3:e985.

  28. 28.

    Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus-host interactions resolved from publicly available microbial genomes. eLife. 2015b;4:e08490.

  29. 29.

    Fuchsman CA, Devol AH, Saunders JK, Mckay C, Rocap G. Niche partitioning of the N cycling microbial community of an offshore oxygen deficient zone. Front Microbiol. 2017;8:2384.

  30. 30.

    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.

  31. 31.

    Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics. 2005;21:951–60.

  32. 32.

    Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science. 2015;348:1261498–91.

  33. 33.

    Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CC, et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ. 2017;5:e3428.

  34. 34.

    Hollibaugh JT, Gifford SM, Moran MA, Ross MJ, Sharma S, Tolar BB. Seasonal variation in the metatranscriptomes of a Thaumarchaeota population from SE USA coastal waters. ISME J. 2014;8:685–98.

  35. 35.

    Thrash JC, Seitz KW, Baker BJ, Temperton B, Gillies LE, Rabalais NN, et al. Metabolic roles of uncultivated bacterioplankton lineages in the Northern Gulf of Mexico Dead Zone. mBio. 2017;8:e01017–17.

  36. 36.

    Oulas A, Polymenakou PN, Seshadri R, Tripp HJ, Mandalakis M, Paez-Espino AD, et al. Metagenomic investigation of the geologically unique Hellenic Volcanic Arc reveals a distinctive ecosystem with unexpected physiology. Environ Microbiol. 2016;18:1122–36.

  37. 37.

    Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:817–8.

  38. 38.

    Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.

  39. 39.

    Tully BJ, Sachdeva R, Graham ED, Heidelberg JF. 290 metagenome-assembled genomes from the Mediterranean Sea: a resource for marine microbiology. PeerJ. 2017;5:e3558.

  40. 40.

    Peng X, Fuchsman CA, Jayakumar A, Oleynik S, Martens-Habbena W, Devol AH, et al. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific. Glob Biogeochem Cycles. 2015;29:2034–49.

  41. 41.

    Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome. 2017;5:69.

  42. 42.

    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261351–59.

  43. 43.

    Ignacio-Espinoza JC, Sullivan MB. Phylogenomics of T4 cyanophages: lateral gene transfer in the ‘core’ and origins of host genes. Environ Microbiol. 2012;14:2113–26.

  44. 44.

    Heinhorst S, Cannon GC, Shively JM. Carboxysomes and carboxysome-like inclusions. Complex intracellular structures in prokaryotes. Berlin, Heidelberg, New York, NY: Springer; 2006. p. 141–66.

  45. 45.

    Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Backstrom D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 2017;541:353–8.

  46. 46.

    Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, et al. Community-wide analysis of microbial genome sequence signatures. Genome Biol. 2009;10:R85.

  47. 47.

    Krupovic M, Koonin EV. Multiple origins of viral capsid proteins from cellular ancestors. Proc Natl Acad Sci USA. 2017;114:E2401–10.

  48. 48.

    López-Pérez M, Haro-Moreno JM, Gonzalez-Serrano R, Parras-Moltó M, Rodriguez-Valera F. Genome diversity of marine phages recovered from Mediterranean metagenomes: Size matters. PLoS Genet. 2017;13:e1007018.

  49. 49.

    Philosof A, Yutin N, Flores-Uribe J, Sharon I, Koonin EV, Beja O. Novel abundant oceanic viruses of uncultured Marine Group II Euryarchaeota. Curr Biol. 2017;27:1362–8.

  50. 50.

    Deng L, Ignacio-Espinoza JC, Gregory AC, Poulos BT, Weitz JS, Hugenholtz P, et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature. 2014;513:242–5.

  51. 51.

    Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA. 2005;102:14683–88.

  52. 52.

    Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol. 2006;4:520–36.

  53. 53.

    Luo HW, Tolar BB, Swan BK, Zhang CLL, Stepanauskas R, Moran MA, et al. Single-cell genomics shedding light on marine Thaumarchaeota diversification. ISME J. 2014;8:732–6.

  54. 54.

    Bayer B, Vojvoda J, Offre P, Alves RJE, Elisabeth NH, Garcia JaL, et al. Physiological and genomic characterization of two novel marine thaumarchaeal strains indicates niche differentiation. ISME J. 2016;10:1051–63.

  55. 55.

    Qin W, Amin SA, Martens-Habbena W, Walker CB, Urakawa H, Devol AH, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc Natl Acad Sci USA. 2014;111:12504–9.

  56. 56.

    Kilias SP, Nomikou P, Papanikolaou D, Polymenakou PN, Godelitsas A, Argyraki A, et al. New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece. Sci Rep. 2013;3:2421.

  57. 57.

    Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424:1047–51.

  58. 58.

    Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 2006;4:e234.

  59. 59.

    Sharon I, Tzahor S, Williamson S, Shmoish M, Man-Aharonovich D, Rusch DB, et al. Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J. 2007;1:492–501.

  60. 60.

    Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123.

  61. 61.

    Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-dea viruses. Science. 2014;344:757–60.

  62. 62.

    Roux S, Hawley AK, Beltran MT, Scofield M, Schwientek P, Stepanauskas R, et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta- genomics. eLife. 2014;3:e03125.

  63. 63.

    Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.

  64. 64.

    He T, Li H, Zhang X. Deep-Sea hydrothermal vent viruses compensate for microbial metabolism in virus-host interactions. mBio. 2017;8:e00893–17.

  65. 65.

    Mulo P, Sicora C, Aro EM. Cyanobacterial psbA gene family: optimization of oxygenic photosynthesis. Cell Mol Life Sci. 2009;66:3697–10.

  66. 66.

    Peng y, Leung HCM, Yiu SM, Chin FYL IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–1428.

  67. 67.

    Jaclyn K Saunders, Gabrielle Rocap, Genomic potential for arsenic efflux and methylation varies among global Prochlorococcus populations. The ISME Journal 2016;10:197–209.

  68. 68.

    Alexandros Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313.

  69. 69.

    Simon A. Berger, Alexandros Stamatakis, Aligning short reads to reference alignments and trees. Bioinformatics 2011;27:2068–2075.

  70. 70.

    David Paez-Espino, I.-Min A. Chen, Krishna Palaniappan, Anna Ratner, Ken Chu, Ernest Szeto, Manoj Pillay, Jinghua Huang, Victor M. Markowitz, Torben Nielsen, Marcel Huntemann, T. B. K. Reddy, Georgios A. Pavlopoulos, Matthew B. Sullivan, Barbara J. Campbell, Feng Chen, Katherine McMahon, Steve J. Hallam, Vincent Denef, Ricardo Cavicchioli, Sean M. Caffrey, Wolfgang R. Streit, John Webster, Kim M. Handley, Ghasem H. Salekdeh, Nicolas Tsesmetzis, Joao C. Setubal, Phillip B. Pope, Wen-Tso Liu, Adam R. Rivers, Natalia N. Ivanova, Nikos C. Kyrpides, IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses. Nucleic Acids Research 2017;45:D457–D465.

  71. 71.

    Thrash JC, Baker BJ, Seitz KW, Temperton B, Campbell LG, Rabalais NN, Henrissat B, Mason OU. Metagenomic assembly and prokaryotic metagenome-assembled genome sequences from the Northern Gulf of Mexico “Dead Zone”. Microbial Research Announcements. 2018;7:9.

Download references


We thank Cameron Thrash, Barbara Campbell, and Feng Chen for permission to include in our analysis select contigs from viral metagenomes sequenced at the Joint Genome Institute for which they are principal investigators. This work was supported by funding from The Gordon and Betty Moore Foundation Marine Microbiology Initiative (GBMF3779) to JAF; from the National Institutes of Health to NAA and JAF (R01 GM120624-01A1); and from the National Science Foundation OCE-1138368 to GR.

Author information

Correspondence to Nathan A. Ahlgren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahlgren, N.A., Fuchsman, C.A., Rocap, G. et al. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J 13, 618–631 (2019) doi:10.1038/s41396-018-0289-4

Download citation

Further reading