Article | Published:

Picoeukaryotes of the Micromonas genus: sentinels of a warming ocean

Abstract

Photosynthetic picoeukaryotesx in the genus Micromonas show among the widest latitudinal distributions on Earth, experiencing large thermal gradients from poles to tropics. Micromonas comprises at least four different species often found in sympatry. While such ubiquity might suggest a wide thermal niche, the temperature response of the different strains is still unexplored, leaving many questions as for their ecological success over such diverse ecosystems. Using combined experiments and theory, we characterize the thermal response of eleven Micromonas strains belonging to four species. We demonstrate that the variety of specific responses to temperature in the Micromonas genus makes this environmental factor an ideal marker to describe its global distribution and diversity. We then propose a diversity model for the genus Micromonas, which proves to be representative of the whole phytoplankton diversity. This prominent primary producer is therefore a sentinel organism of phytoplankton diversity at the global scale. We use the diversity within Micromonas to anticipate the potential impact of global warming on oceanic phytoplankton. We develop a dynamic, adaptive model and run forecast simulations, exploring a range of adaptation time scales, to probe the likely responses to climate change. Results stress how biodiversity erosion depends on the ability of organisms to adapt rapidly to temperature increase.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al. Climate change 2014: synthesis Report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC; 2014. https://www.springer.com/us/book/9780387981413

  2. 2.

    Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, et al. The oceanic sink for anthropogenic CO2. Science. 2004;305:367–71.

  3. 3.

    Thomas MK, Kremer CT, Klausmeier CA, Litchman E. A global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–8.

  4. 4.

    Irwin AJ, Finkel ZV, Muller-Karger FE, Troccoli Ghinaglia L. Phytoplankton adapt to changing ocean environments. PNAS. 2015;112:5762–6.

  5. 5.

    Reid PC, Fisher AC, Lewis-Brown E, Meredith MP, Sparrow M, Andersson AJ, et al. Impacts of the oceans on climate change. Adv Mar Biol. 2009;56:1–150.

  6. 6.

    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.

  7. 7.

    Farrant GK, Doré H, Cornejo-Castillo FM, Partensky F, Ratin M, Ostrowski M, et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. PNAS. 2016;113:E3365–E3374.

  8. 8.

    Rutherford S, D’Hondt S, Prell W. Environmental controls on the geographic distribution of zooplankton diversity. Nature. 1999;400:749–52.

  9. 9.

    Fuhrman JA. Microbial community structure and its functional implications. Nature. 2009;459:193–9.

  10. 10.

    Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, Berghe EV, et al. Global patterns and predictors of marine biodiversity across taxa. Nature. 2010;466:1098–103.

  11. 11.

    Jun Sul W, Oliver TA, Ducklow HW, Amaral-Zettler LA, Sogin ML. Marine bacteria exhibit a bipolar distribution. PNAS. 2013;110:2342–7.

  12. 12.

    Wiens JJ. The niche, biogeography and species interactions. Phylosophical Trans R Soc B Biol Sci. 2011;366:2336–50.

  13. 13.

    Pittera J, Humily F, Thorel M, Grulois D, Garczarek L, Six C. Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus. ISME J. 2014;8:1221–36.

  14. 14.

    Martiny AC, Ma L, Mouginot C, Chandler JW, Jeremy W, Zinser ER. Interactions between thermal acclimatation, growth rate, and phylogeny influence Prochlorococcus elemental stoichiometry. PLoS ONE. 2016;11:e0168291.

  15. 15.

    Lovejoy C, Vincent WF, Bonilla S, Roy S, Martineau MJ, Terrado R, et al. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas. J Phycol. 2007;43:78–89.

  16. 16.

    Worden AZ, Not F. Ecology and diversity of picoeukaryotes. In:Gasol JM, Kirchman DL. editors. John Wiley & Sons. Microbial ecology of the oceans. 2nd ed.; 2008. p. 159–205. 

  17. 17.

    Monier A, Sudek S, Fast NM, Worden AZ. Gene invasion in distant eukaryotic lineages: discovery of mutually exclusive genetic elements reveals marine biodiversity. ISME J. 2013;7:1764–74.

  18. 18.

    Monier A, Comte J, Babin M, Forest A, Matsuoka A, Lovejoy C. Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J. 2015;9:990–1002.

  19. 19.

    Not F, Latasa M, Marie D, Cariou T, Vaulot D, Simon N. A single species, Micromonas pusilla (Prasinophyceae), dominates the eukaryotic picoplankton in the Western English Channel. Appl Environ Microbiol. 2004;70:4064–72.

  20. 20.

    Massana R. Eukaryotic picoplankton in surface oceans. Annu Rev Microbiol. 2011;65:91–110.

  21. 21.

    Guillou L, Eikrem W, Chrétiennot-Dinet MJ, Le Gall F, Massana R, Romari K, et al. Diversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems. Protist. 2004;155:193–214.

  22. 22.

    Slapeta J, Lopez-Garcia P, Moreira D. Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol. 2006;23:23–9.

  23. 23.

    Foulon E, Not F, Jalabert F, Cariou T, Massana R, Simon N. Ecological niche partitioning in the picoplanktonic green alga Micromonas pusilla: evidence from environmental surveys using phylogenetic probes. Environ Microbiol. 2008;10:2433–43.

  24. 24.

    Marin B, Melkonian M. Molecular phylogeny and classification of the Mamiellophyceae class. nov. (Chlorophyta) based on sequence comparisons of the nuclear-and plastid-encoded rRNA operons. Protist. 2010;161:304–36.

  25. 25.

    Simon N, Foulon E, Grulois D, Six C, Desdevises Y, Latimier M, et al. Revision of the genus Micromonas Manton et Parke (Chlorophyta, Mamiellophyceae), of the type species M. pusilla (Butcher) Manton & Parke and of the species M. commoda van Baren, Bachy and Worden and description of two new species based on the genetic and phenotypic characterization of cultured isolates. Protist. 2017;168:612–35.

  26. 26.

    Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311:1737–40.

  27. 27.

    De Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.

  28. 28.

    Worden AZ, Lee JH, Mock T, Rouzé P, Simmons MP, Aerts AL, et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science. 2009;324:268–72.

  29. 29.

    Keller MD, Selvin RC, Claus W, Guillard RRL. Media for the culture of oceanic ultraphytoplankton. J Phycol. 1987;23:633–8.

  30. 30.

    Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol. 1999;65:45–52.

  31. 31.

    Bernard O, Rémond B. Validation of a simple model accounting for light and temperature effect on microalgal growth. Bioresour Technol. 2012;123:520–7.

  32. 32.

    Grimaud GM, Mairet F, Sciandra A, Bernard O. Modeling the temperature effect on the specific growth rate of phytoplankton: a review. Rev Environ Sci Bio/Technol. 2017;16:625–45.

  33. 33.

    Low-Decarie E, Boatman TG, Bennet N, Passfield W, Gavalas-Olea A, Siegel P, et al. Predictions of response to temperature are contingent on model choice and data quality. Ecol Evol. 2017;7:10467–81.

  34. 34.

    Norberg J. Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnol Oceanogr. 2004;49:1269–77.

  35. 35.

    Boatman TG, Lawson T, Geider RJ. A key marine diazotroph in a changing ocean: The interacting effects of temperature, CO2 and light on the growth of Trichodesmium erythraeum IMS101. PLoS ONE. 2017;12:e0168796.

  36. 36.

    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

  37. 37.

    Stamatakis A. RaxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.

  38. 38.

    Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772–772.

  39. 39.

    Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2014;10:e1003537.

  40. 40.

    Letunic I, Bork P. Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 2011;39:W475–8.

  41. 41.

    Berger SA, Stamatakis A. Aligning short reads to reference alignments and trees. Bioinformatics. 2012;27:2068–75.

  42. 42.

    Oksanen J, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, et al. Vegan: community ecology package. R package version 2.4–0. 2016. https://CRAN.R-project.org/package=vegan.

  43. 43.

    Kruskal JB. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 1964;29:1–27.

  44. 44.

    Eppley RW. Temperature and phytoplankton growth in the sea. Fish Bull. 1972;70:1063–85.

  45. 45.

    Grimaud GM. Modelling the temperature effect on phytoplankton: from acclimation to adaptation. Doctoral dissertation, University Nice Sophia Antipolis; 2016.

  46. 46.

    Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data. 2015;2:150023.

  47. 47.

    Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ. 2014;2:e593.

  48. 48.

    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2012;41:D597–D604.

  49. 49.

    Wickham H. ggplot2: elegant graphics for data analysis. Springer; 2016. https://www.springer.com/us/book/9780387981413link

  50. 50.

    Griffies SM, Gnanadesikan AWDK, Dixon KW, Dunne JP, Gerdes R, Harrison MJ, et al. Formulation of an ocean model for global climate simulations. Ocean Sci. 2005;1:45–79.

  51. 51.

    Delworth T, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, et al. GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J Clim. 2006;19:643–74.

  52. 52.

    Nakicenovic N, Alcamo J, Grubler A, Riahi K, Roehrl RA, Rogner HH, et al. Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change. In: Nakicenovic N, Swart R, editors. Cambridge, UK: Cambridge University Press; 2000.

  53. 53.

    Padfield D, Yvon-Durocher G, Buckling A, Jennings S, Yvon-Durocher G. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol Lett. 2016;19:133–42.

  54. 54.

    Bonnefond H, Grimaud G, Rumin J, Bougaran G, Talec A, Gachelin M, et al. Continuous selection pressure to improve temperature acclimation of Tisochrysis lutea. PLoS ONE. 2017;12:e0183547.

  55. 55.

    Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters-outcome of a scientific community wide study. PLoS ONE. 2013;8:e63091.

  56. 56.

    Raven JA, Geider RJ. Temperature and Algal Growth. New Phytol. 1988;110:441–61.

  57. 57.

    Serra-Maia R, Bernard O, Gonçalves A, Bensalem S, Lopes F. Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobiore actor. Algal Res. 2016;18: 352–9.

  58. 58.

    Salvucci ME, Crafts-Brandner SJ. Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant. 2004;120:179–86.

  59. 59.

    Rokka A, Aro EM, Herrmann RG, Andersson B, Vener AV. Dephosphorylation of photosystem II reaction center proteins in plant photosynthetic embranes as an immediate response to abrupt elevation of temperature. Plant Physiol. 2016;123:1525–36.

  60. 60.

    Los DA, Murata N. Membrane fluidity and its roles in the perception of environmental signals. Biochim Et Biophys Acta. 2004;1666:142–57.

  61. 61.

    Cuvelier ML, Allenc AE, Monier A, McCrow JP, Messie M, Tringed SG, et al. Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. Proc Natl Acad Sci. 2010;107:14679–84.

  62. 62.

    Monier A, Worden AZ, Richards TA. Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans. Environ Microbiol Rep. 2016;8:461–9.

  63. 63.

    Demir-Hilton E, Sudek S, Cuvelier ML, Gentemann CL, Zehr JP, Worden AZ. Global distribution patterns of distinct clades of the photosynthetic picoeukaryote Ostreococcus. ISME J. 2011;5:1095–107.

  64. 64.

    Chen B. Patterns of thermal limits of phytoplankton. J Plankton Res. 2015;37:285–92.

  65. 65.

    Rosso L, Lobry JR, Flandrois JP. An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. J Theor Biol. 1993;162:447–63.

  66. 66.

    Baudoux AC, Lebredonchel H, Dehmer H, Latimier M, Edern R, Rigaut-Jalabert F, et al. Interplay between the genetic clades of Micromonas and their viruses in the Western English Channel. Environ Microbiol Rep. 2015;7:765–73.

  67. 67.

    Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.

  68. 68.

    Botebol H, Lelandais G, Six C, Lesuisse E, Meng A, Bittner L, et al. Acclimatation of a low iron adapted Ostreococcus strain to iron limitation through cell biomass lowering. Sci Report. 2017;7:327.

  69. 69.

    Grimaud GM, Le Guennec V, Ayata SD, Mairet F, Sciandra A, Bernard O. Modelling the effect of temperature on phytoplankton growth across the global ocean. IFAC-Pap. 2015;48:228–33.

  70. 70.

    Stinchcombe JR, Function-valued Traits Working Group, Kirkpatrick M. Genetics and evolution of function-valued traits: understanding environmentally responsive phenotypes. Trends Ecol Evol. 2012;27:637–47.

  71. 71.

    Huertas IE, Rouco M, Lopez-Radas V, Costas E. Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proc R Soc B. 2011;278:3534–43.

  72. 72.

    Schaum CE, Barton S, Bestion E, Buckling A, Garcia-Carreras B, Lopez P, et al. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat Ecol Evol. 2017;1:0094.

  73. 73.

    Lutz MJ, Caldeira K, Dunbar RB, Behrenfeld MJ. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J Geophys Res. 2007;112:C10.

  74. 74.

    Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature. 2016;532:465.

Download references

Acknowledgements

We thank members of the RCC for their help and work to maintain many phytoplankton strains in culture. We are also grateful to Mridul Thomas for providing his phytoplankton diversity data [3] and to Keith Paarporn for proofreading the text. Finally, we thank the reviewers and editor for their constructive comments on a previous version of this manuscript. This research was funded by the Inria Project Lab Algae in silico and by the ANR funding agency REVIREC (grant no. 12-BSV7-0006-01).

Author contributions

DD, ACB, OB, NS, AS, and SR designed the study. DD, ACB, NS, PG, FRJ carried out the experiments. DD and OB carried out the modeling and statistical analyses. DD provided the display items. AM carried out the phylogenetic and Tara Ocean V9 dataset analysis. CS and DM helped technically. DD, OB, and SR wrote the manuscript with contributions from NS, CS, and ACB.

Author information

Correspondence to David Demory or Olivier Bernard or Sophie Rabouille.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5