Abstract

Island biogeography theory is one of the most influential paradigms in ecology. That island characteristics, including remoteness, can profoundly modulate biological diversity has been borne out by studies of animals and plants. By contrast, the processes influencing microbial diversity in island systems remain largely undetermined. We sequenced arbuscular mycorrhizal (AM) fungal DNA from plant roots collected on 13 islands worldwide and compared AM fungal diversity on islands with existing data from mainland sites. AM fungal communities on islands (even those >6000 km from the closest mainland) comprised few endemic taxa and were as diverse as mainland communities. Thus, in contrast to patterns recorded among macro-organisms, efficient dispersal appears to outweigh the effects of taxogenesis and extinction in regulating AM fungal diversity on islands. Nonetheless, AM fungal communities on more distant islands comprised a higher proportion of previously cultured and large-spored taxa, indicating that dispersal may be human-mediated or require tolerance of significant environmental stress, such as exposure to sunlight or high salinity. The processes driving large-scale patterns of microbial diversity are a key consideration for attempts to conserve and restore functioning ecosystems in this era of rapid global change.

  • Subscribe to The ISME Journal for full access:

    $547

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    Darwin C. (1845). Journal of Researches into the Natural History and Geology of the Countries Visited During the Voyage of H.M.S. Beagle Round the World, under the Command of Capt. Fitz Roy, R.N. John Murray, UK.

  2. 2.

    MacArthur RH, Wilson EO. The theory of island biogeography. NJ, USA: Princeton University Press; 1967.

  3. 3.

    Simberloff DS, Wilson EO. Experimental zoogeography of islands. A two-year record of colonization. Ecology. 1970;51:934–7.

  4. 4.

    Whittaker RJ, Fernandez-Palacios JM. Island biogeography: ecology, evolution and conservation. Oxford, UK: Oxford University Press; 2007.

  5. 5.

    Patiño J, Whittaker RJ, Borges PA, Fernández‐Palacios JM, Ah‐Peng C, Araújo MB, et al. A roadmap for island biology: 50 fundamental questions after 50 years of The theory of Island Biogeography. J Biogeogr. 2017. https://doi.org/1mec.14037/jbi.12986.

  6. 6.

    Santos A, Field R, Ricklefs RE. New directions in island biogeography. Glob Ecol Biogeogr. 2016;25:751–68.

  7. 7.

    Andrews JH, Kinkel LL, Berbee FM, Nordheim EV. Fungi, leaves, and the theory of island biogeography. Microb Ecol. 1987;14:277–90.

  8. 8.

    Mangan SA, Eom AH, Adler GH, Yavitt JB, Herre EA. Diversity of arbuscular mycorrhizal fungi across a fragmented forest in Panama: insular spore communities differ from mainland communities. Oecologia. 2004;141:687–700.

  9. 9.

    Peay KG, Garbelotto M, Bruns TD. Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology. 2010;91:3631–40.

  10. 10.

    Bell T, Newman JA, Thompson IP, Lilley AK, van der Gast CJ. Bacteria and island biogeography - Response. Science. 2005;309:1998–9.

  11. 11.

    Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688.

  12. 12.

    Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.

  13. 13.

    Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Ba A, et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science. 2015;349:970–3.

  14. 14.

    Öpik M, Moora M, Liira J, Zobel M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol. 2006;94:778–90.

  15. 15.

    Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia. 2016;108:1028–46.

  16. 16.

    Smith SE, Read DJ. Mycorrhizal symbiosis. NY, USA: Academic Press; 2008.

  17. 17.

    Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 2010;4:337–45.

  18. 18.

    Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol. 2007;95:95–105.

  19. 19.

    Davison J, Moora M, Jairus T, Vasar M, Öpik M, Zobel M. Hierarchical assembly rules in arbuscular mycorrhizal (AM) fungal communities. Soil Biol Biochem. 2016;97:63–70.

  20. 20.

    Savary R, Masclaux FG, Wyss T, Droh G, Cruz Corella J, Machado AP, et al. A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis. ISME J. 2018;12:17–30.

  21. 21.

    Egan C, Li DW, Klironomos JN. Detection of arbuscular mycorrhizal fungal spores in the air across different biomes and ecoregions. Fungal Ecol. 2014;12:26–31.

  22. 22.

    Gange AC. Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol Biochem. 1993;25:1021–6.

  23. 23.

    Lekberg Y, Meadow J, Rohr JR, Redecker D, Zabinski CA. Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park. Ecology. 2011;92:1292–302.

  24. 24.

    Nielsen KB, Kjøller R, Bruun HH, Schnoor TK, Rosendahl S. Colonization of new land by arbuscular mycorrhizal fungi. Fungal Ecol. 2016;20:22–29.

  25. 25.

    Harner MJ, Opitz N, Geluso K, Tockner K, Rillig MC. Arbuscular mycorrhizal fungi on developing islands within a dynamic river floodplain: an investigation across successional gradients and soil depth. Aquat Sci. 2011;73:35–42.

  26. 26.

    Jacquet C, Mouillot D, Kulbicki M, Gravel D. Extensions of Island Biogeography Theory predict the scaling of functional trait composition with habitat area and isolation. Ecol Lett. 2017;20:135–46.

  27. 27.

    Carvajal-Endara S, Hendry AP, Emery NC, Davies TJ. Habitat filtering not dispersal limitation shapes oceanic island floras: species assembly of the Galápagos archipelago. Ecol Lett. 2017;20:495–504.

  28. 28.

    Adsersen H. Intra-archipelago distribution patterns of vascular plants in Galapagos. Monogr Syst Bot Mo Bot Gard. 1988;32:67–78.

  29. 29.

    Vargas P, Nogales M, Jaramillo P, Olesen JM, Traveset A, Heleno R. Plant colonization across the Galápagos Islands: success of the sea dispersal syndrome. Bot J Linn Soc. 2014;174:349–58.

  30. 30.

    Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.

  31. 31.

    Nelson MB, Martiny AC, Martiny JBH. Global biogeography of microbial nitrogen-cycling traits in soil. Proc Natl Acad Sci USA. 2016;113:8033–40.

  32. 32.

    Green JL, Bohannan BJM, Whitaker RJ. Microbial biogeography: From taxonomy to traits. Science. 2008;320:1039–43.

  33. 33.

    Halbwachs H, Heilmann-Clausen J, Bässler C. Mean spore size and shape in ectomycorrhizal and saprotrophic assemblages show strong responses under resource constraints. Fungal Ecol. 2017;26:59–64.

  34. 34.

    Andrew C, Heegaard E, Halvorsen R, Martinez-Peña F, Egli S, Kirk PM, et al. Climate impacts on fungal community and trait dynamics. Fungal Ecol. 2016;22:17–25.

  35. 35.

    Öpik M, Davison J. Uniting species- and community-oriented approaches to understand arbuscular mycorrhizal fungal diversity. Fungal Ecol. 2016;24:106–13.

  36. 36.

    van der Heijden MG, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11:296–310.

  37. 37.

    Ohsowski BM, Zaitsoff PD, Öpik M, Hart MM. Where the wild things are: looking for uncultured Glomeromycota. New Phytol. 2014;204:171–9.

  38. 38.

    Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A. Mechanisms of long-distance seed dispersal. Trends Ecol Evol. 2008;23:638–47.

  39. 39.

    Norros V, Rannik Ü, Hussein T, Petäjä T, Vesala T, Ovaskainen O. Do small spores disperse further than large spores? Ecology. 2014;95:1612–21.

  40. 40.

    Norros V, Karhu E, Norden J, Vahatalo AV, Ovaskainen O. Spore sensitivity to sunlight and freezing can restrict dispersal in wood-decay fungi. Ecol Evol. 2015;5:3312–26.

  41. 41.

    Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst. 2002;33:125–59.

  42. 42.

    Bago B, Zipfel W, Williams RM, Chamberland H, Lafontaine JG, Webb WW, et al. In vivo studies on the nuclear behaviour of the arbuscular mycorrhizal fungus Gigaspora rosea grown under axenic conditions. Protoplasma. 1998;203:1–15.

  43. 43.

    Klironomos JN, Hart MM, Gurney JE, Moutoglis P. Interspecific differences in the tolerance of arbuscular mycorrhizal fungi to freezing and drying. Can J Bot. 2001;79:1161–6.

  44. 44.

    Varga S, Finozzi C, Vestberg M, Kytoviita MM. Arctic arbuscular mycorrhizal spore community and viability after storage in cold conditions. Mycorrhiza. 2015;25:335–43.

  45. 45.

    Heleno R, Vargas P. How do islands become green? Glob Ecol Biogeogr. 2015;24:518–26.

  46. 46.

    van der Pijl L. Principles of dispersal in higher plants. Berlin: Springer; 1982.

  47. 47.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

  48. 48.

    Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, et al. The online database MaarjAM reveals global and ecosystem distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010;188:223–41.

  49. 49.

    Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73.

  50. 50.

    Grime JP. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol. 1998;86:902–10.

  51. 51.

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. vegan: Community Ecology Package. R package version 2.3-5. 2016. https://CRAN.R-project.org/package=vegan.

  52. 52.

    Chao A, Chiu CH, Jost L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annu Rev Ecol Evol Syst. 2014;45:297–324.

  53. 53.

    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.

  54. 54.

    Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: Linear and nonlinear mixed effects models. R package version 3.1-125. 2016. http://CRAN.R-project.org/package=nlme.

  55. 55.

    Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.

  56. 56.

    Koske R, Gemma JN. Arbuscular mycorrhizal fungi on Hawaiian sand dunes: Island of Kaua’i. Pac Sci. 1996;50:36–45.

  57. 57.

    Melo CD, Luna S, Krüger C, Walker C, Mendonça D, Fonseca HM, et al. Communities of arbuscular mycorrhizal fungi under Picconia azorica in native forests of Azores. Symbiosis. 2017. https://doi.org/10.1007/s13199-017-0487-2.

  58. 58.

    Powell JR, Monaghan MT, Öpik M, Rillig MC. Evolutionary criteria outperform operational approaches in producing ecologically relevant fungal species inventories. Mol Ecol. 2011;20:655–66.

  59. 59.

    Marleau J, Dalpe Y, St-Arnaud M, Hijri M. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi. BMC Evol Biol. 2011;11:51.

  60. 60.

    Koske R, Bonin C, Kelly J, Martinez C. Effects of sea water on spore germination of sand-dune-inhabiting arbuscular mycorrhizal fungus. Mycologia. 1996;88:947–50.

  61. 61.

    Juniper S, Abbott LK. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza. 2006;16:371–9.

  62. 62.

    Jönsson BF, Watson JR. The timescales of global surface-ocean connectivity. Nat Commun. 2016;7:11239.

  63. 63.

    Li W, Wang M, Pan H, Burgaud G, Liang S, Guo J, et al. Highlighting patterns of fungal diversity and composition shaped by ocean currents using the East China Sea as a model. Mol Ecol. 2018;27:564 https://doi.org/1mec.14037/mec.14440.

  64. 64.

    Rosendahl S, Mcgee P, Morton JB. Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol. 2009;18:4316–29.

  65. 65.

    Cicconardi F, Borges PA, Strasberg D, Oromí P, López H, Pérez‐Delgado AJ, et al. MtDNA metagenomics reveals large‐scale invasion of belowground arthropod communities by introduced species. Mol Ecol. 2017;26:3104 https://doi.org/1mec.14037/mec.14037.

  66. 66.

    Moora M, Davison J, Öpik M, Metsis M, Saks Ü, Jairus T, et al. Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol. 2014;90:609–21.

  67. 67.

    Veresoglou SD, Caruso T, Rillig MC. Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families. Plant Soil. 2013;368:507–18.

  68. 68.

    de Bello F, Berg MP, Dias AT, Diniz-Filho JAF, Götzenberger L, Hortal J, et al. On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Folia Geobot. 2015;50:349–57.

  69. 69.

    Grilli G, Urcelay C, Galetto L, Davison J, Vasar M, Saks Ü, et al. The composition of arbuscular mycorrhizal fungal communities in the roots of a ruderal forb is not related to the forest fragmentation process. Environ Microbiol. 2015;17:2709–20.

  70. 70.

    Weigelt P, Jetz W, Kreft H. Bioclimatic and physical characterization of the world’s islands. Proc Natl Acad Sci USA. 2013;110:15307–12.

  71. 71.

    Uibopuu A, Moora M, Öpik M, Zobel M. Temperate forest understorey species performance is altered by local arbuscular mycorrhizal fungal communities from stands of different successional stages. Plant Soil. 2012;356:331–9.

  72. 72.

    Williams A, Ridgway HJ, Norton DA. Growth and competitiveness of the New Zealand tree species Podocarpus cunninghamii is reduced by ex-agricultural AMF but enhanced by forest AMF. Soil Biol Biochem. 2011;43:339–45.

  73. 73.

    Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett. 2010;13:394–407.

  74. 74.

    Koch AM, Antunes PM, Maherali H, Hart MM, Klironomos JN. Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytol. 2017;214:1330–7. https://doi.org/1mec.14037/nph.14465.

  75. 75.

    Hart MM, Reader RJ, Klironomos JN. Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia. 2001;93:1186–94.

Download references

Acknowledgements

We acknowledge Andres Koppel, Hendrik Moora, Jodi Price, Riin Tamme and Anna Zobel for help with fieldwork. We are grateful to José María Fernández-Palacios for commenting on an earlier version of the manuscript.

Funding

This study was supported by the Estonian Research Council (IUT 20-28, IUT 20-29, PUT1170, PUTJD78), the European Regional Development Fund (Centre of Excellence EcolChange) and GIP CNRT (GIPCNRT98).

Author information

Affiliations

  1. Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, Tartu, 51005, Estonia

    • John Davison
    • , Mari Moora
    • , Maarja Öpik
    • , Leho Ainsaar
    • , Inga Hiiesalu
    • , Teele Jairus
    • , Rein Kalamees
    • , Kadri Koorem
    • , Kersti Püssa
    • , Ülle Reier
    • , Meelis Pärtel
    • , Martti Vasar
    •  & Martin Zobel
  2. CIRAD UMR082 LSTM, 34398, Montpellier Cedex 5, France

    • Marc Ducousso
  3. Department of Biological Sciences, School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, 86011-5694, USA

    • Nancy Johnson
  4. IRD, UMR040 LSTM, 34398, Montpellier, France

    • Philippe Jourand
  5. Délégation à la Recherche de la Polynésie française, Bâtiment du Gouvernement, Avenue Pouvanaa a Oopa, B.P. 20981, 98713, Papeete, Tahiti, French Polynesia

    • Jean-Yves Meyer
  6. School of Earth and Environmental Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

    • Marina Semchenko
  7. Global Change Research Group, Mediterranean Institute of Advanced Studies, CSIC-UIB, Miquel Marqués 21, Esporles, 07190, Mallorca, Spain

    • Anna Traveset

Authors

  1. Search for John Davison in:

  2. Search for Mari Moora in:

  3. Search for Maarja Öpik in:

  4. Search for Leho Ainsaar in:

  5. Search for Marc Ducousso in:

  6. Search for Inga Hiiesalu in:

  7. Search for Teele Jairus in:

  8. Search for Nancy Johnson in:

  9. Search for Philippe Jourand in:

  10. Search for Rein Kalamees in:

  11. Search for Kadri Koorem in:

  12. Search for Jean-Yves Meyer in:

  13. Search for Kersti Püssa in:

  14. Search for Ülle Reier in:

  15. Search for Meelis Pärtel in:

  16. Search for Marina Semchenko in:

  17. Search for Anna Traveset in:

  18. Search for Martti Vasar in:

  19. Search for Martin Zobel in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to John Davison.

Electronic supplementary material

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/s41396-018-0196-8

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.