Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Animal models of benign prostatic hyperplasia

Abstract

Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms are common clinical concerns that affect aging men all over the world. The underlying molecular and cellular mechanisms remain elusive. Over the past few years, a number of animal models of BPH, including spontaneous model, BPH-induction model, xenograft model, metabolic syndrome model, mechanical obstruction model, and transgenic model, have been established that may provide useful tools to fill these critical knowledge gaps. In this review, we therefore outlined the present status quo for animal models of BPH, comparing the pros and cons with respect to their ability to mimic the etiological, histological, and clinical hallmarks of BPH and discussed their applicability for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Choi YJ, Kim EK, Fan M, Tang Y, Hwang YJ, Sung SH. Effect of Paecilomyces tenuipes extract on testosterone-induced benign prostatic hyperplasia in Sprague-Dawley rats. Int J Environ Res Public Health. 2019;16:3764–73.

    CAS  PubMed Central  Google Scholar 

  2. Jin BR, Kim HJ, Seo JH, Kim MS, Lee KH, Yoon IJ, et al. HBX-6, standardized Cornus officinalis and Psoralea corylifolia L. extracts, suppresses benign prostate hyperplasia by attenuating E2F1 activation. Molecules. 2019;24:1719–32.

    CAS  PubMed Central  Google Scholar 

  3. Popovics P, Schally AV, Salgueiro L, Kovacs K, Rick FG. Antagonists of growth hormone-releasing hormone inhibit proliferation induced by inflammation in prostatic epithelial cells. Proc Natl Acad Sci USA. 2017;114:1359–64.

    CAS  PubMed  Google Scholar 

  4. Zhang J, Ou Z, Zhang X, He W, Wang R, Mo M, et al. Holmium laser enucleation of the prostate versus thulium laser enucleation of the prostate for the treatment of large-volume prostates > 80 ml: 18-month follow-up results. World J Urol. 2019;38:1555–62.

    PubMed  Google Scholar 

  5. Vignozzi L, Gacci M, Maggi M. Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome. Nat Rev Urol. 2016;13:108–19.

    CAS  PubMed  Google Scholar 

  6. Madersbacher S, Sampson N, Culig Z. Pathophysiology of benign prostatic hyperplasia and benign prostatic enlargement: a mini-review. Gerontology. 2019;65:458–64.

    CAS  PubMed  Google Scholar 

  7. Hata J, Machida T, Matsuoka K, Hoshi S, Akaihata H, Hiraki H, et al. Complement activation by autoantigen recognition in the growth process of benign prostatic hyperplasia. Sci Rep. 2019;9:599-612.

    Google Scholar 

  8. Nicholson TM, Ricke WA. Androgens and estrogens in benign prostatic hyperplasia: past, present and future. Differentiation. 2011;82:184–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Choi BR, Kim HK, Soni KK, Karna KK, Lee SW, So I, et al. Additive effect of oral LDD175 to tamsulosin and finasteride in a benign prostate hyperplasia rat model. Drug Des Dev Ther. 2018;12:1855–63.

    CAS  Google Scholar 

  10. Brennen WN, Isaacs JT. Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat Rev Urol. 2018;15:703–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Berry SJ, Coffey DS, Walsh PC, Ewing LL. The development of human benign prostatic hyperplasia with age. J Urol. 1984;132:474–9.

    CAS  PubMed  Google Scholar 

  12. Peters CA, Walsh PC. The effect of nafarelin acetate, a luteinizing-hormone-releasing hormone agonist, on benign prostatic hyperplasia. N Engl J Med. 1987;317:599–604.

    CAS  PubMed  Google Scholar 

  13. Morales A. Androgen replacement therapy and prostate safety. Eur Urol 2002;41:113–20.

    CAS  PubMed  Google Scholar 

  14. Ho CK, Habib FK. Estrogen and androgen signaling in the pathogenesis of BPH. Nat Rev Urol. 2011;8:29–41.

    CAS  PubMed  Google Scholar 

  15. Wang L, Yang JR, Yang LY, Liu ZT. Chronic inflammation in benign prostatic hyperplasia: implications for therapy. Med Hypotheses. 2008;70:1021–3.

    PubMed  Google Scholar 

  16. Isaacs JT, Coffey DS. Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl. 1989;2:33–50.

    CAS  PubMed  Google Scholar 

  17. Lin VK, Wang SY, Vazquez DV, C CX, Zhang S, Tang L. Prostatic stromal cells derived from benign prostatic hyperplasia specimens possess stem cell like property. Prostate. 2007;67:1265–76.

    CAS  PubMed  Google Scholar 

  18. Huang X, Lee C. Regulation of stromal proliferation, growth arrest, differentiation and apoptosis in benign prostatic hyperplasia by TGF-beta. Front Biosci. 2003;8:s740–9.

    CAS  PubMed  Google Scholar 

  19. He Y, Ou Z, Chen X, Zu X, Liu L, Li Y, et al. LPS/TLR4 signaling enhances TGF-beta response through downregulating BAMBI during prostatic hyperplasia. Sci Rep. 2016;6:27051.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang R, Zhang M, Ou Z, He W, Chen L, Zhang J, et al. Long noncoding RNA DNM3OS promotes prostate stromal cells transformation via the miR-29a/29b/COL3A1 and miR-361/TGFbeta1 axes. 2019;11:9442–60.

  21. Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, et al. Animal models of hypertension: a scientific statement from the American Heart Association. Hypertension 2019;73:e87–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Burrows DJ, McGown A, Jain SA, De Felice M, Ramesh TM, Sharrack B, et al. Animal models of multiple sclerosis: from rodents to zebrafish. Mult Scler. 2019;25:306–24.

    PubMed  Google Scholar 

  23. Steiner MS, Couch RC, Raghow S, Stauffer D. The chimpanzee as a model of human benign prostatic hyperplasia. J Urol. 1999;162:1454–61.

    CAS  PubMed  Google Scholar 

  24. Mubiru JN, Hubbard GB, Dick EJ Jr., Furman J, Troyer DA, Rogers J. Nonhuman primates as models for studies of prostate specific antigen and prostatic diseases. Prostate. 2008;68:1546–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Walsh PC, Wilson JD. The induction of prostatic hypertrophy in the dog with androstanediol. J Clin Investig. 1976;57:1093–7.

    CAS  PubMed  Google Scholar 

  26. DeKlerk DP, Coffey DS, Ewing LL, McDermott IR, Reiner WG, Robinson CH, et al. Comparison of spontaneous and experimentally induced canine prostatic hyperplasia. J Clin Investig. 1979;64:842–9.

    CAS  PubMed  Google Scholar 

  27. Berry SJ, Strandberg JD, Saunders WJ, Coffey DS. Development of canine benign prostatic hyperplasia with age. Prostate. 1986;9:363–73.

    CAS  PubMed  Google Scholar 

  28. Lowseth LA, Gerlach RF, Gillett NA, Muggenburg BA. Age-related changes in the prostate and testes of the beagle dog. Vet Pathol. 1990;27:347–53.

    CAS  PubMed  Google Scholar 

  29. Murakoshi M, Ikeda R, Fukui N. The effects of chlormadinone acetate (CMA), antiandrogen, on the pituitary, testis, prostate and adrenal gland of the dog with spontaneous benign prostatic hyperplasia. J Toxicol Sci. 2001;26:119–27.

    CAS  PubMed  Google Scholar 

  30. McNeal J. Pathology of benign prostatic hyperplasia. Insight into etiology. Urol Clin North Am. 1990;17:477–86.

    CAS  PubMed  Google Scholar 

  31. Zhou Y, Xiao XQ, Chen LF, Yang R, Shi JD, Du XL, et al. Proliferation and phenotypic changes of stromal cells in response to varying estrogen/androgen levels in castrated rats. Asian J Androl. 2009;11:451–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Prins GS, Huang L, Birch L, Pu Y. The role of estrogens in normal and abnormal development of the prostate gland. Ann N Y Acad Sci. 2006;1089:1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Al-Trad B, Aljabali A, Al Zoubi M, Shehab M, Omari S. Effect of gold nanoparticles treatment on the testosterone-induced benign prostatic hyperplasia in rats. Int J Nanomed. 2019;14:3145–54.

    CAS  Google Scholar 

  34. Sun F, Baez-Diaz C, Sanchez-Margallo FM. Canine prostate models in preclinical studies of minimally invasive interventions: part II, benign prostatic hyperplasia models. Transl Androl Urol. 2017;6:547–55.

    PubMed  PubMed Central  Google Scholar 

  35. Dai GC, Hu B, Zhang WF, Peng F, Wang R, Liu ZY, et al. Chemical characterization, anti-benign prostatic hyperplasia effect and subchronic toxicity study of total flavonoid extract of Pteris multifida. Food Chem Toxicol. 2017;108:524–31.

    CAS  PubMed  Google Scholar 

  36. McCormick DL, Li J, Tian Y, Guo S, Gu H, Yuan Q, et al. Testosterone-induced benign prostatic hyperplasia rat and dog as facile models to assess drugs targeting lower urinary tract symptoms. PloS ONE. 2018;13:e0191469.

    Google Scholar 

  37. Zou Y, Aboshora W, Li J, Xiao T, Zhang L. Protective effects of Lepidium meyenii (Maca) aqueous extract and lycopene on testosterone propionate-induced prostatic hyperplasia in mice. Phytother Res. 2017;31:1192–8.

    CAS  PubMed  Google Scholar 

  38. Li J, Tian Y, Guo S, Gu H, Yuan Q, Xie X. Testosterone-induced benign prostatic hyperplasia rat and dog as facile models to assess drugs targeting lower urinary tract symptoms. PLoS ONE. 2018;13:e0191469.

    PubMed  PubMed Central  Google Scholar 

  39. Li Z, Xiao H, Wang K, Zheng Y, Chen P, Wang X, et al. Upregulation of oxytocin receptor in the hyperplastic prostate. Front Endocrinol. 2018;9:403.

    Google Scholar 

  40. Nicholson TM, Ricke EA, Marker PC, Miano JM, Mayer RD, Timms BG, et al. Testosterone and 17beta-estradiol induce glandular prostatic growth, bladder outlet obstruction, and voiding dysfunction in male mice. Endocrinology. 2012;153:5556–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yokota T, Honda K, Tsuruya Y, Nomiya M, Yamaguchi O, Gotanda K, et al. Functional and anatomical effects of hormonally induced experimental prostate growth: a urodynamic model of benign prostatic hyperplasia (BPH) in the beagle. Prostate. 2004;58:156–63.

    PubMed  Google Scholar 

  42. Funahashi Y, O’Malley KJ, Kawamorita N, Tyagi P, DeFranco DB, Takahashi R, et al. Upregulation of androgen-responsive genes and transforming growth factor-beta1 cascade genes in a rat model of non-bacterial prostatic inflammation. Prostate. 2014;74:337–45.

    CAS  PubMed  Google Scholar 

  43. Zhang M, Luo C, Cui K, Xiong T, Chen Z. Chronic inflammation promotes proliferation in the prostatic stroma in rats with experimental autoimmune prostatitis: study for a novel method of inducing benign prostatic hyperplasia in a rat model. World J Urol. 2020. https://doi.org/10.1007/s00345-020-03090-6.

  44. Kramer G, Mitteregger D, Marberger M. Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur Urol. 2007;51:1202–16.

    CAS  PubMed  Google Scholar 

  45. Kim HJ, Park JW, Cho YS, Cho CH, Kim JS, Shin HW, et al. Pathogenic role of HIF-1alpha in prostate hyperplasia in the presence of chronic inflammation. Biochim et Biophys Acta. 2013;1832:183–94.

    CAS  Google Scholar 

  46. Dos Santos Gomes FO, Oliveira AC, Ribeiro EL, da Silva BS, Dos Santos LAM, de Lima IT, et al. Intraurethral injection with LPS: an effective experimental model of prostatic inflammation. Inflamm Res. 2018;67:43–55.

    PubMed  Google Scholar 

  47. Miller GJ, Runner MN, Chung LW. Tissue interactions and prostatic growth: II. Morphological and biochemical characterization of adult mouse prostatic hyperplasia induced by fetal urogenital sinus implants. Prostate. 1985;6:241–53.

    CAS  PubMed  Google Scholar 

  48. Mori F, Oda N, Sakuragi M, Sakakibara F, Kiniwa M, Miyoshi K. New histopathological experimental model for benign prostatic hyperplasia: stromal hyperplasia in rats. J Urol. 2009;181:890–8.

    PubMed  Google Scholar 

  49. Tian S, Miao M, Bai M, Wu Y, Gao J, Guo L. Effect of stachydrine hydrochloride to the prostate hyperplasia model in mice. Saudi J Biol Sci. 2019;26:782–9.

    CAS  PubMed  Google Scholar 

  50. Kojima Y, Sasaki S, Kubota Y, Imura M, Oda N, Kiniwa M, et al. Up-regulation of alpha1a and alpha1d-adrenoceptors in the prostate by administration of subtype selective alpha1-adrenoceptor antagonist tamsulosin in patients with benign prostatic hyperplasia. J Urol. 2011;186:1530–6.

    CAS  PubMed  Google Scholar 

  51. Kojima Y, Sasaki S, Oda N, Koshimizu TA, Hayashi Y, Kiniwa M, et al. Prostate growth inhibition by subtype-selective alpha(1)-adrenoceptor antagonist naftopidil in benign prostatic hyperplasia. Prostate. 2009;69:1521–8.

    CAS  PubMed  Google Scholar 

  52. Arruzazabala ML, Más R, Molina V, Noa M, Carbajal D, Mendoza N. Effect of D-004, a lipid extract from the Cuban royal palm fruit, on atypical prostate hyperplasia induced by phenylephrine in rats. Drugs R D. 2006;7:233–41.

    CAS  PubMed  Google Scholar 

  53. Marinese D, Patel R, Walden PD. Mechanistic investigation of the adrenergic induction of ventral prostate hyperplasia in mice. Prostate. 2003;54:230–7.

    CAS  PubMed  Google Scholar 

  54. Wang L, Xie L, Tintani F, Xie H, Li C, Cui Z, et al. Aberrant transforming growth factor-beta activation recruits mesenchymal stem cells during prostatic hyperplasia. Stem Cells Transl Med. 2017;6:394–404.

    CAS  PubMed  Google Scholar 

  55. Kim J, Yanagihara Y, Kikugawa T, Ji M, Tanji N, Masayoshi Y, et al. A signaling network in phenylephrine-induced benign prostatic hyperplasia. Endocrinology. 2009;150:3576–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Golomb E, Kruglikova A, Dvir D, Parnes N, Abramovici A. Induction of atypical prostatic hyperplasia in rats by sympathomimetic stimulation. Prostate. 1998;34:214–21.

    CAS  PubMed  Google Scholar 

  57. Lopez-Barcons LA. Human benign prostatic hyperplasia heterotransplants as an experimental model. Asian J Androl. 2010;12:157–63.

    CAS  PubMed  Google Scholar 

  58. Wang Y, Revelo MP, Sudilovsky D, Cao M, Chen WG, Goetz L, et al. Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate. 2005;64:149–59.

    CAS  PubMed  Google Scholar 

  59. Blagosklonny MV, Love HD, Booton SE, Boone BE, Breyer JP, Koyama T, et al. Androgen regulated genes in human prostate xenografts in mice: relation to BPH and prostate cancer. PLoS ONE. 2009;4:e8384.

    Google Scholar 

  60. Tsujimura A, Fukuhara S, Soda T, Takezawa K, Kiuchi H, Takao T, et al. Histologic evaluation of human benign prostatic hyperplasia treated by dutasteride: a study by xenograft model with improved severe combined immunodeficient mice. Urology. 2015;85:274 e1–8.

    Google Scholar 

  61. Aaron-Brooks LM, Sasaki T, Vickman RE, Wei L, Franco OE, Ji Y, et al. Hyperglycemia and T cell infiltration are associated with stromal and epithelial prostatic hyperplasia in the nonobese diabetic mouse. Prostate. 2019;79:980–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ozden C, Ozdal OL, Urgancioglu G, Koyuncu H, Gokkaya S, Memis A. The correlation between metabolic syndrome and prostatic growth in patients with benign prostatic hyperplasia. Eur Urol. 2007;51:199–203. Discussion 4-6.

    PubMed  Google Scholar 

  63. Vikram A, Kushwaha S, Jena GB. Relative influence of testosterone and insulin in the regulation of prostatic cell proliferation and growth. Steroids. 2011;76:416–23.

    CAS  PubMed  Google Scholar 

  64. Ribeiro DL, Caldeira EJ, Cândido EM, Manzato AJ, Taboga SR, Cagnon VH. Prostatic stromal microenvironment and experimental diabetes. Eur J Histochem. 2006;50:51–60.

    CAS  PubMed  Google Scholar 

  65. Jiang M, Strand DW, Franco OE, Clark PE, Hayward SW. PPARgamma: a molecular link between systemic metabolic disease and benign prostate hyperplasia. Differentiation. 2011;82:220–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Escobar EL, Gomes-Marcondes MC, Carvalho HF. Dietary fatty acid quality affects AR and PPARgamma levels and prostate growth. Prostate. 2009;69:548–58.

    CAS  PubMed  Google Scholar 

  67. Vikram A, Jena GB, Ramarao P. Increased cell proliferation and contractility of prostate in insulin resistant rats: linking hyperinsulinemia with benign prostate hyperplasia. Prostate. 2010;70:79–89.

    CAS  PubMed  Google Scholar 

  68. Xu C, Xu Y, Shen Z, Zhou H, Xiao J, Huang T. Effects of metformin on prostatic tissue of rats with metabolic syndrome and benign prostatic hyperplasia. Int Urol Nephrol. 2018;50:611–7.

    CAS  PubMed  Google Scholar 

  69. Zhang X, Na Y, Guo Y. Biologic feature of prostatic hyperplasia developed in spontaneously hypertensive rats. Urology. 2004;63:983–8.

    PubMed  Google Scholar 

  70. Zhang X, Shen F, Dong L, Zhao X, Qu X. Influence and pathophysiological mechanisms of simvastatin on prostatic hyperplasia in spontaneously hypertensive rats. Urologia Internationalis. 2013;91:467–73.

    CAS  PubMed  Google Scholar 

  71. Yamashita M, Zhang X, Shiraishi T, Uetsuki H, Kakehi Y. Determination of percent area density of epithelial and stromal components in development of prostatic hyperplasia in spontaneously hypertensive rats. Urology. 2003;61:484–9.

    PubMed  Google Scholar 

  72. Matityahou A, Rosenzweig N, Golomb E. Rapid proliferation of prostatic epithelial cells in spontaneously hypertensive rats: a model of spontaneous hypertension and prostate hyperplasia. J Androl. 2003;24:263–9.

    PubMed  Google Scholar 

  73. Speakman MJ, Brading AF, Gilpin CJ, Dixon JS, Gilpin SA, Gosling JA. Bladder outflow obstruction—a cause of denervation supersensitivity. J Urol. 1987;138:1461–6.

    CAS  PubMed  Google Scholar 

  74. Broderick G, Longhurst P, Juniewicz P, Wein A, Levin R. A novel canine model of partial outlet obstruction secondary to prostatic hypertrophy. World J Urol. 1994;12:245–8.

    CAS  PubMed  Google Scholar 

  75. Malkowicz SB, Wein AJ, Elbadawi A, Arsdalen KV, Ruggieri MR, Levin RM. Acute biochemical and functional alterations in the partially obstructed rabbit urinary bladder. J Urol. 1986;136:1324–9.

    CAS  PubMed  Google Scholar 

  76. Austin JC, Chacko SK, DiSanto M, Canning DA, Zderic SA. A male murine model of partial bladder outlet obstruction reveals changes in detrusor morphology, contractility and myosin isoform expression. J Urol. 2004;172:1524–8.

    PubMed  Google Scholar 

  77. Levin RM, Hudson AP. The molecular genetic basis of mitochondrial malfunction in bladder tissue following outlet obstruction. J Urol. 2004;172:438–47.

    CAS  PubMed  Google Scholar 

  78. Lai KP, Huang CK, Fang LY, Izumi K, Lo CW, Wood R, et al. Targeting stromal androgen receptor suppresses prolactin-driven benign prostatic hyperplasia (BPH). Mol Endocrinol. 2013;27:1617–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wennbo H, Kindblom J, Isaksson OG, Törnell J. Transgenic mice overexpressing the prolactin gene develop dramatic enlargement of the prostate gland. Endocrinology. 1997;138:4410–5.

    CAS  PubMed  Google Scholar 

  80. Tutrone RF, Ball RA, Ornitz DM, Leder P, Richie JP. Benign prostatic hyperplasia in a transgenic mouse: a new hormonally sensitive investigatory model. J Urol. 1993;149:633–9.

    PubMed  Google Scholar 

  81. Muller WJ, Lee FS, Dickson C, Peters G, Pattengale P, Leder P. The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO J. 1990;9:907–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hata J, Satoh Y, Akaihata H, Hiraki H, Ogawa S, Haga N, et al. Molecular classification of benign prostatic hyperplasia: a gene expression profiling study in a rat model. Int J Urol. 2016;23:599–612.

    CAS  PubMed  Google Scholar 

  83. Schauer IG, Ressler SJ, Rowley DR. Keratinocyte-derived chemokine induces prostate epithelial hyperplasia and reactive stroma in a novel transgenic mouse model. Prostate. 2009;69:373–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wen S, Chang HC, Tian J, Shang Z, Niu Y, Chang C. Stromal androgen receptor roles in the development of normal prostate, benign prostate hyperplasia, and prostate cancer. Am J Pathol. 2015;185:293–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Welsh M, Moffat L, McNeilly A, Brownstein D, Saunders PT, Sharpe RM, et al. Smooth muscle cell-specific knockout of androgen receptor: a new model for prostatic disease. Endocrinology. 2011;152:3541–51.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Yi He, PhD, from University of Texas Health Science Center at San Antonio and Ting Wu, PhD, from University of Pittsburgh for helpful hints in grammar check and native expression.

Funding

This research was funded by the National Natural Science Foundation of China 81770758 (to LW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, M., Tang, J. et al. Animal models of benign prostatic hyperplasia. Prostate Cancer Prostatic Dis 24, 49–57 (2021). https://doi.org/10.1038/s41391-020-00277-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41391-020-00277-1

This article is cited by

Search

Quick links