Processed and raw tomato consumption and risk of prostate cancer: a systematic review and dose–response meta-analysis

Abstract

Background

Prostate cancer (PCa) is the second most frequently diagnosed cancer among men worldwide. Many epidemiological studies have found an inverse association between increased tomato consumption and PCa risk. This study aims to determine the associations between consumption of various types of tomato products and PCa risk and to investigate potential dose–response relationships.

Methods

We conducted a systematic review and dose–response meta-analysis of dietary tomato in relation to PCa. Eligible studies were published before April 10, 2017 and were identified from PubMed, Web of Science, and the Cochrane Library. We estimated pooled risk ratios (RRs) and 95% confidence intervals (CI) using random and fixed effects models. Linear and nonlinear dose–response relationships were also evaluated for PCa risk.

Results

Thirty studies related to tomato consumption and PCa risk were included in the meta-analysis, which summarized data from 24,222 cases and 260,461 participants. Higher total tomato consumption was associated with a reduced risk of PCa (RR = 0.81, 95% CI: 0.71–0.92, p = 0.001). Specifically, tomato foods (RR = 0.84, 95% CI: 0.72–0.98, p = 0.030) and cooked tomatoes and sauces (RR = 0.84, 95% CI: 0.73–0.98, p = 0.029) were associated with a reduced risk of PCa. However, no associations were found for raw tomatoes (RR = 0.96, 95% CI: 0.84–1.09, p = 0.487). There was a significant dose–response association observed for total tomato consumption (p = 0.040), cooked tomatoes and sauces (p < 0.001), and raw tomatoes (p = 0.037), but there was not a significant association with tomato foods (plinear = 0.511, pnonlinear = 0.289).

Conclusions

Our data demonstrate that increased tomato consumption is inversely associated with PCa risk. These findings were accompanied with dose–response relationships for total tomato consumption and for cooked tomatoes and sauces. Further studies are required to determine the underlying mechanisms of these associations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Wan L, Tan HL, Thomas-Ahner JM, Pearl DK, Erdman JW Jr, Moran NE, et al. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis. Cancer Prev Res (Phila). 2014;7:1228–39.

    Article  CAS  Google Scholar 

  3. 3.

    Krinsky NI, Johnson EJ. Carotenoid actions and their relation to health and disease. Mol Aspects Med. 2005;26:459–516.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Story EN, Kopec RE, Schwartz SJ, Harris GK. An update on the health effects of tomato lycopene. Annu Rev Food Sci Technol. 2010;1:189–210.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Chen JY, Song Y, Zhang LS. Lycopene/Tomato consumption and the risk of prostate cancer: a systematic review and meta-analysis of prospective studies. J Nutr Sci Vitaminol (Tokyo). 2013;59:213–23.

    Article  CAS  Google Scholar 

  6. 6.

    Chen P, Zhang W, Wang X, Zhao K, Negi DS, Zhuo L, et al. Lycopene and risk of prostate cancer: a systematic review and meta-analysis. Medicine (Baltimore). 2015;94:e1260.

    Article  CAS  Google Scholar 

  7. 7.

    Etminan M, Takkouche B, Caamano-Isorna F. The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev. 2004;13:340–5.

    PubMed  CAS  Google Scholar 

  8. 8.

    Wang YL, Cui R, Xiao YY, Fang JM, Xu Q. Effect of carotene and lycopene on the risk of prostate cancer: a systematic review and dose-response meta-analysis of observational studies. Plos One. 2015;10:e0137427.

  9. 9.

    Rowles JL, Ranard KM, Smith JW, An R, Erdman Jr JW. Increased dietary and circulating lycopene are associated with reduced prostate cancer risk: a systematic review and meta-analysis. Prostate Cancer And Prostatic Diseases 2017;20:361–77.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Dixon LB, Subar AF, Wideroff L, Thompson FE, Kahle LL, Potischman N. Carotenoid and tocopherol estimates from the NCI diet history questionnaire are valid compared with multiple recalls and serum biomarkers. J Nutr. 2006;136(12):3054–61.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Martí R, Roselló S, Cebolla-Cornejo J. Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. Cancers 2016;8(6):58.

    PubMed Central  Article  CAS  Google Scholar 

  12. 12.

    Conlon LE, Wallig MA, Erdman JW Jr. Low-lycopene containing tomato powder diet does not protect against prostate cancer in TRAMP mice. Nutr Res. 2015;35:882–90.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Campbell JK, Engelmann NJ, Lila MA, Erdman JW Jr.. Phytoene, phytofluene, and lycopene from tomato powder differentially accumulate in tissues of male fisher 344 Rats. Nutr Res. 2007;27:794–801.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Xu X, Li J, Wang X, Wang S, Meng S, Zhu Y, et al. Tomato consumption and prostate cancer risk: a systematic review and meta-analysis. Sci Rep. 2016;6:37091.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. 15.

    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12.

    PubMed  Article  Google Scholar 

  16. 16.

    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5.

    PubMed  Article  Google Scholar 

  18. 18.

    Egger M, Smith GD, Phillips AN. Meta-analysis: principles and procedures. BMJ. 1997;315:1533–7.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.

    PubMed  Article  Google Scholar 

  20. 20.

    Jackson D, White IR, Thompson SG. Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med. 2010;29:1282–97.

    PubMed  Article  Google Scholar 

  21. 21.

    Chen H, Manning AK, Dupuis J. A method of moments estimator for random effect multivariate meta-analysis. Biometrics. 2012;68:1278–84.

    PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Mashurabad PC, Palika R, Jyrwa YW, Bhaskarachary K, Pullakhandam R. Dietary fat composition, food matrix and relative polarity modulate the micellarization and intestinal uptake of carotenoids from vegetables and fruits. J Food Sci Technol. 2017;54:333–41.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Brown MJ, Ferruzzi MG, Nguyen ML, Cooper DA, Eldridge AL, Schwartz SJ, et al. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am J Clin Nutr. 2004;80:396–403.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Unlu NZ, Bohn T, Francis DM, Nagaraja HN, Clinton SK, Schwartz SJ. Lycopene from heat-induced cis-isomer-rich tomato sauce is more bioavailable than from all-trans-rich tomato sauce in human subjects. Br J Nutr. 2007;98:140–6.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Nguyen M, Francis D, Schwartz S. Thermal isomerisation susceptibility of carotenoids in different tomato varieties. J Sci Food Agric. 2001;81:910–7.

    Article  CAS  Google Scholar 

  26. 26.

    Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol. 2008;61:991–6.

    PubMed  Article  Google Scholar 

  27. 27.

    Sterne JAC, Egger M. Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. J Clin Epidemiol. 2001;54:1046–55.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992;135:1301–9.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. Stata J. 2006;6:40–57.

    Google Scholar 

  33. 33.

    Agalliu I, Kirsh VA, Kreiger N, Soskolne CL, Rohan TE. Oxidative balance score and risk of prostate cancer: results from a case-cohort study. Cancer Epidemiol. 2011;35:353–61. doi: 310.1016/j.canep.2010.1011.1002.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Andersson SO, Wolk A, Bergstrom R, Giovannucci E, Lindgren C, Baron J, et al. Energy, nutrient intake and prostate cancer risk: a population-based case-control study in Sweden. Int J Cancer. 1996;68:716–22.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Antwi SO, Steck SE, Su LJ, Hebert JR, Zhang H, Craft NE et al. Carotenoid Intake and Adipose Tissue Carotenoid Levels in Relation to Prostate Cancer Aggressiveness among African-American and European-American Men in the North Carolina-Louisiana Prostate Cancer Project (PCaP). The Prostate 2016;76(12):1053–66.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Askari F, Parizi MK, Jessri M, Rashidkhani B. Fruit and vegetable intake in relation to prostate cancer in Iranian men: a case-control study. Asian Pac J Cancer Prev. 2014;15:5223–7.

    PubMed  Article  Google Scholar 

  37. 37.

    Bravo MP, Castellanos E, del Rey, Calero J. Dietary factors and prostatic cancer. Urol Int. 1991;46:163–6.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Fraser GE. Associations between diet and cancer, ischemic heart disease, and all-cause mortality in non-Hispanic white California seventh-day adventists. Am J Clin Nutr. 1999;70:532S–8S.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Ghadirian P, Lacroix A, Maisonneuve P, Perret C, Drouin G, Perrault JP, et al. Nutritional factors and prostate cancer: a case-control study of French Canadians in Montreal, Canada. Cancer Causes Control. 1996;7:428–36.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Goodman M, Bostick RM, Ward KC, Terry PD, van Gils CH, Taylor JA, et al. Lycopene intake and prostate cancer risk: effect modification by plasma antioxidants and the XRCC1 genotype. Nutr Cancer. 2006;55:13–20.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Grant WB. An ecologic study of dietary links to prostate cancer. Altern Med Rev. 1999;4(3):162–9.

    PubMed  CAS  Google Scholar 

  42. 42.

    Hsing AW, McLaughlin JK, Schuman LM, Bjelke E, Gridley G, Wacholder S, et al. Diet, tobacco use, and fatal prostate cancer: results from the Lutheran Brotherhood Cohort Study. Cancer Res. 1990;50:6836–40.

    PubMed  CAS  Google Scholar 

  43. 43.

    Jian L, Lee AH, Binns CW. Tea and lycopene protect against prostate cancer. Asia Pac J Clin Nutr. 2007;16:453–7.

    PubMed  CAS  Google Scholar 

  44. 44.

    McCann SE, Ambrosone CB, Moysich KB, Brasure J, Marshall JR, Freudenheim JL, et al. Intakes of selected nutrients, foods, and phytochemicals and prostate cancer risk in western New York. Nutr Cancer. 2005;53:33–41.

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Mettlin C, Selenskas S, Natarajan N, Huben R. Beta-carotene and animal fats and their relationship to prostate cancer risk. A case-control study. Cancer. 1989;64:605–12.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Mikhak B, Hunter DJ, Spiegelman D, Platz EA, Wu K, Erdman JW Jr., et al. Manganese superoxide dismutase (MnSOD) gene polymorphism, interactions with carotenoid levels and prostate cancer risk. Carcinogenesis. 2008;29:2335–40. doi: 2310.1093/carcin/bgn2212. Epub2008 Sep 2310

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Rohan TE, Howe GR, Burch JD, Jain M. Dietary factors and risk of prostate cancer: a case-control study in Ontario, Canada. Cancer Causes Control. 1995;6:145–54.

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Schuurman AG, Goldbohm RA, Dorant E, van den Brandt PA. Vegetable and fruit consumption and prostate cancer risk: a cohort study in The Netherlands. Cancer Epidemiol Biomarkers Prev. 1998;7:673–80.

    PubMed  CAS  Google Scholar 

  49. 49.

    Tzonou A, Signorello LB, Lagiou P, Wuu J, Trichopoulos D, Trichopoulou A. Diet and cancer of the prostate: a case-control study in Greece. Int J Cancer. 1999;80:704–8.

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Umesawa M, Iso H, Mikami K, Kubo T, Suzuki K, Watanabe Y, et al. Relationship between vegetable and carotene intake and risk of prostate cancer: the JACC study. Br J Cancer. 2014;110:792–6. doi: 710.1038/bjc.2013.1685.

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Walker M, Aronson KJ, King W, Wilson JW, Fan W, Heaton JP, et al. Dietary patterns and risk of prostate cancer in Ontario, Canada. Int J Cancer. 2005;116:592–8.

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Wu K, Erdman JW Jr, Schwartz SJ, Platz EA, Leitzmann M, Clinton SK, et al. Plasma and dietary carotenoids, and the risk of prostate cancer: a nested case-control study. Cancer Epidemiol Biomarkers Prev. 2004;13:260–9.

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Ziegler RG, Vogt TM. Tomatoes, lycopene, and risk of prostate cancer. Pharm Biol. 2002;40:59–69.

    Article  CAS  Google Scholar 

  54. 54.

    Basu HN, Del Vecchio AJ, Flider F, Orthoefer FT. Nutritional and potential disease prevention properties of carotenoids. J Am Oil Chem Soc. 2001;78:665–75.

    Article  CAS  Google Scholar 

  55. 55.

    Basu A, Imrhan V. Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur J Clin Nutr. 2007;61:295–303.

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Bosetti C, Micelotta S, Dal Maso L, Talamini R, Montella M, Negri E, et al. Food groups and risk of prostate cancer in Italy. Int J Cancer. 2004;110:424–8.

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Chan JM, Holick CN, Leitzmann MF, Rimm EB, Willett WC, Stampfer MJ, et al. Diet after diagnosis and the risk of prostate cancer progression, recurrence, and death (United States). Cancer Causes Control. 2006;17:199–208.

    PubMed  Article  Google Scholar 

  58. 58.

    Chen L, Stacewicz-Sapuntzakis M, Duncan C, Sharifi R, Ghosh L, van Breemen R, et al. Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a whole-food intervention. J Natl Cancer Inst. 2001;93:1872–9.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  59. 59.

    Gonzalez CA, Riboli E. Diet and cancer prevention: Contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur J Cancer. 2010;46:2555–62. doi: 2510.1016/j.ejca.2010.2507.2025

    PubMed  Article  Google Scholar 

  60. 60.

    Datta M, Taylor ML, Frizzell B. Dietary and serum lycopene levels in prostate cancer patients undergoing intensity-modulated radiation therapy. J Med Food. 2013;16(12):1131–7. doi: 1110.1089/jmf.2012.0223.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. 61.

    Hardin J, Cheng I, Witte JS. Impact of consumption of vegetable, fruit, grain, and high glycemic index foods on aggressive prostate cancer risk. Nutr Cancer. 2011;63(6):860–72. doi: 810.1080/01635581.01632011.01582224.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Harris A, Gray MA, Slaney DP, Turley ML, Fowles JR, Weinstein P. Ethnic differences in diet and associations with clinical markers of prostate disease in New Zealand men. Anticancer Res. 2004;24:2551–6.

    PubMed  Google Scholar 

  63. 63.

    Hayes RB, Ziegler RG, Gridley G, Swanson C, Greenberg RS, Swanson GM, et al. Dietary factors and risks for prostate cancer among blacks and whites in the United States. Cancer Epidemiol Biomarkers Prev. 1999;8:25–34.

    PubMed  CAS  Google Scholar 

  64. 64.

    Heshmat MY, Kaul L, Kovi J, Jackson MA, Jackson AG, Jones GW, et al. Nutrition and prostate cancer: a case-control study. Prostate. 1985;6:7–17.

    PubMed  Article  CAS  Google Scholar 

  65. 65.

    La Vecchia C. Tomatoes, lycopene intake, and digestive tract and female hormone-related neoplasms. Exp Biol Med. 2002;227:860–3.

    Article  Google Scholar 

  66. 66.

    Le Marchand L, Hankin JH, Kolonel LN, Wilkens LR. Vegetable and fruit consumption in relation to prostate cancer risk in Hawaii: a reevaluation of the effect of dietary beta-carotene. Am J Epidemiol. 1991;133:215–9.

    PubMed  Article  Google Scholar 

  67. 67.

    Park E, Stacewicz-Sapuntzakis M, Sharifi R, Wu Z, Freeman VL, Bowen PE. Diet adherence dynamics and physiological responses to a tomato product whole-food intervention in African-American men. Br J Nutr. 2013;109:2219–30. doi: 2210.1017/S0007114512004436.

    PubMed  Article  CAS  Google Scholar 

  68. 68.

    Pelucchi C, Bosetti C, Rossi M, Negri E, La Vecchia C. Selected aspects of mediterranean diet and cancer risk. Nutr Cancer Int J. 2009;61:756–66.

    Article  Google Scholar 

  69. 69.

    Richman EL, Carroll PR, Chan JM. Vegetable and fruit intake after diagnosis and risk of prostate cancer progression. Int J Cancer. 2012;131:201–10. doi: 210.1002/ijc.26348.

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Satia JA, Patterson RE, Herrero R, Jin F, Dai Q, King IB, et al. Study of diet, biomarkers and cancer risk in the United States, China and Costa Rica. Int J Cancer. 1999;82:28–32.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Schultz C, Meier M, Schmid H-P. Nutrition, dietary supplements and adenocarcinoma of the prostate. Maturitas. 2011;70:339–42.

    PubMed  Article  CAS  Google Scholar 

  72. 72.

    Wang Y, Jacobs EJ, Newton CC, McCullough ML. Lycopene, tomato products and prostate cancer-specific mortality among men diagnosed with nonmetastatic prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Int J Cancer. 2016;138:2846–55. doi: 2810.1002/ijc.30027.

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC. A prospective study of tomato products, lycopene, and prostate cancer risk. J Natl Cancer Inst. 2002;94:391–8.

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Lagiou A, Trichopoulos D, Tzonou A, Lagiou P, Mucci L. Are there age-dependent effects of diet on prostate cancer risk? Soz Praventivmed. 2001;46:329–34.

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Dagnelie PC, Schuurman AG, Goldbohm RA, Van den Brandt PA. Diet, anthropometric measures and prostate cancer risk: a review of prospective cohort and intervention studies. BJU Int. 2004;93:1139–50.

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Lippi G, Targher G. Tomatoes, lycopene-containing foods and cancer risk. Br J Cancer. 2011;104:1234–5.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. 77.

    Darlington GA, Kreiger N, Lightfoot N, Purdham J, Sass-Kortsak A. Prostate cancer risk and diet, recreational physical activity and cigarette smoking. Chronic Dis Can. 2007;27:145–53.

    PubMed  Google Scholar 

  78. 78.

    Diallo A, Deschasaux M, Galan P, Hercberg S, Zelek L, Latino-Martel P, et al. Associations between fruit, vegetable and legume intakes and prostate cancer risk: results from the prospective Supplementation en Vitamines et Mineraux Antioxydants (SU.VI.MAX) cohort. Br J Nutr. 2016;115:1579–85. doi: 1510.1017/S0007114516000520.

    PubMed  Article  CAS  Google Scholar 

  79. 79.

    Er V, Lane JA, Martin RM, Emmett P, Gilbert R, Avery KN, et al. Adherence to dietary and lifestyle recommendations and prostate cancer risk in the prostate testing for cancer and treatment (ProtecT) trial. Cancer Epidemiol Biomarkers Prev. 2014;23:2066–77. doi: 2010.1158/1055-9965.EPI-2014-0322.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80.

    Hodge AM, English DR, McCredie MR, Severi G, Boyle P, Hopper JL, et al. Foods, nutrients and prostate cancer. Cancer Causes Control. 2004;15:11–20.

    PubMed  Article  Google Scholar 

  81. 81.

    Jain MG, Hislop GT, Howe GR, Ghadirian P. Plant foods, antioxidants, and prostate cancer risk: findings from case-control studies in Canada. Nutr Cancer. 1999;34:173–84.

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Jian L, Du CJ, Lee AH, Binns CW. Do dietary lycopene and other carotenoids protect against prostate cancer? Int J Cancer. 2005;113:1010–4.

    PubMed  Article  CAS  Google Scholar 

  83. 83.

    Kirsh VA, Mayne ST, Peters U, Chatterjee N, Leitzmann MF, Dixon LB, et al. A prospective study of lycopene and tomato product intake and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2006;15:92–8.

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Kolonel LN, Hankin JH, Whittemore AS, Wu AH, Gallagher RP, Wilkens LR, et al. Vegetables, fruits, legumes and prostate cancer: A multiethnic case-control study. Cancer Epidemiol Biomarkers Prev. 2000;9:795–804.

    PubMed  CAS  Google Scholar 

  85. 85.

    Li XM, Li J, Tsuji I, Nakaya N, Nishino Y, Zhao XJ. Mass screening-based case-control study of diet and prostate cancer in Changchun, China. Asian J Androl. 2008;10:551–60.

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Mills PK, Beeson WL, Phillips RL, Fraser GE. Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer. 1989;64:598–604.

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Norrish AE, Jackson RT, Sharpe SJ, Skeaff CM. Prostate cancer and dietary carotenoids. Am J Epidemiol. 2000;151:119–23.

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Salem S, Salahi M, Mohseni M, Ahmadi H, Mehrsai A, Jahani Y, et al. Major dietary factors and prostate cancer risk: a prospective multicenter case-control study. Nutr Cancer Int J. 2011;63:21–27.

    Google Scholar 

  89. 89.

    Sonoda T, Nagata Y, Mori M, Miyanaga N, Takashima N, Okumura K, et al. A case-control study of diet and prostate cancer in Japan: possible protective effect of traditional Japanese diet. Cancer Sci. 2004;95:238–42.

    PubMed  Article  CAS  Google Scholar 

  90. 90.

    Stram DO, Hankin JH, Wilkens LR, Park S, Henderson BE, Nomura AM, et al. Prostate cancer incidence and intake of fruits, vegetables and related micronutrients: the multiethnic cohort study (United States). Cancer Causes Control. 2006;17:1193–207.

    PubMed  Article  Google Scholar 

  91. 91.

    Subahir MN, Shah SA, Zainuddin ZM. Risk factors for prostate cancer in Universiti Kebangsaan Malaysia Medical Centre: a case-control study. Asian Pac J Cancer Prev. 2009;10:1015–20.

    PubMed  Google Scholar 

  92. 92.

    Takachi R, Inoue M, Sawada N, Iwasaki M, Sasazuki S, Ishihara J, et al. Fruits and Vegetables in relation to prostate cancer in Japanese Men: the Japan public health center-based prospective study. Nutr Cancer Int J. 2010;62:30–9.

    Article  Google Scholar 

  93. 93.

    Villeneuve PJ, Johnson KC, Kreiger N, Mao Y. Risk factors for prostate cancer: results from the Canadian national enhanced cancer surveillance system. Cancer Causes Control. 1999;10:355–67.

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Vlajinac H, Ilic M, Marinkovic J, Sipetic S. Nutrition and prostate cancer. J BUON. 2010;15:698–703.

    PubMed  CAS  Google Scholar 

  95. 95.

    Ambrosini GL, de Klerk NH, Fritschi L, Mackerras D, Musk B. Fruit, vegetable, vitamin A intakes, and prostate cancer risk. Prostate Cancer Prostatic Dis. 2008;11:61–6. Epub 2007 May 2022

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Bosetti C, Talamini R, Montella M, Negri E, Conti E, Franceschi S, et al. Retinol, carotenoids and the risk of prostate cancer: a case-control study from Italy. Int J Cancer. 2004;112:689–92.

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Bosetti C, Tzonou A, Lagiou P, Negri E, Trichopoulos D, Hsieh CC. Fraction of prostate cancer incidence attributed to diet in Athens, Greece. Eur J Cancer Prev. 2000;9:119–23.

    PubMed  Article  CAS  Google Scholar 

  98. 98.

    Cohen JH, Kristal AR, Stanford JL. Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst. 2000;92:61–8.

    PubMed  Article  CAS  Google Scholar 

  99. 99.

    Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC. Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst. 1995;87:1767–76.

    PubMed  Article  CAS  Google Scholar 

  100. 100.

    Key TJ, Silcocks PB, Davey GK, Appleby PN, Bishop DT. A case-control study of diet and prostate cancer. Br J Cancer. 1997;76:678–87.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  101. 101.

    Giovannucci E, Liu Y, Platz EA, Stampfer MJ, Willett WC. Risk factors for prostate cancer incidence and progression in the health professionals follow-up study. Int J Cancer. 2007;121:1571–8.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. 102.

    Graff RE, Pettersson A, Lis RT, Ahearn TU, Markt SC, Wilson KM, et al. Dietary lycopene intake and risk of prostate cancer defined by ERG protein expression. Am J Clin Nutr. 2016;103:851–60. doi: 810.3945/ajcn.3115.118703.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. 103.

    Mazdak H, Mazdak M, Jamali L, Keshteli AH. Determination of prostate cancer risk factors in Isfahan, Iran: a case-control study. Med Arh. 2012;66:45–48.

    PubMed  Article  Google Scholar 

  104. 104.

    Shahar S, Shafurah S, Hasan Shaari NS, Rajikan R, Rajab NF, Golkhalkhali B, et al. Roles of diet, lifetime physical activity and oxidative DNA damage in the occurrence of prostate cancer among men in Klang Valley, Malaysia. Asian Pac J Cancer Prev. 2011;12:605–11.

    PubMed  Google Scholar 

  105. 105.

    Gallus S, Talamini R, Bosetti C, Negri E, Montella M, Franceschi S, et al. Pizza consumption and the risk of breast, ovarian and prostate cancer. Eur J Cancer Prev. 2006;15:74–76.

    PubMed  Article  Google Scholar 

  106. 106.

    Petimar J, Wilson KM, Wu K, Wang M, Albanes D, van den Brandt PA et al. A Pooled Analysis of 15 Prospective Cohort Studies on the Association between Fruit, Vegetable, and Mature Bean Consumption and Risk of Prostate Cancer. Cancer Epidemiol Biomarkers Prev. 2017;26(8):1276–87.

    PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Veda S, Platel K, Srinivasan K. Influence of food acidulants and antioxidant spices on the bioaccessibility of beta-carotene from selected vegetables. J Agric Food Chem. 2008;56:8714–9.

    PubMed  Article  CAS  Google Scholar 

  108. 108.

    Key TJ, Appleby PN, Travis RC, Albanes D, Alberg AJ, Barricarte A, et al. Carotenoids, retinol, tocopherols, and prostate cancer risk: pooled analysis of 15 studies. Am J Clin Nutr. 2015;102:1142–57. doi: 1110.3945/ajcn.1115.114306.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109.

    van Leeuwen PJ, Roobol MJ, Kranse R, Zappa M, Carlsson S, Bul M, et al. Towards an optimal interval for prostate cancer screening. Eur Urol. 2012;61:171–6.

    PubMed  Article  Google Scholar 

  110. 110.

    Roobol MJ, Carlsson SV. Risk stratification in prostate cancer screening. Nat Rev Urol. 2013;10:38–48.

    PubMed  Article  CAS  Google Scholar 

  111. 111.

    Welch HG, Black WC. Overdiagnosis in cancer. J Natl Cancer Inst. 2010;102:605–13.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to John W. Erdman Jr.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rowles, J.L., Ranard, K.M., Applegate, C.C. et al. Processed and raw tomato consumption and risk of prostate cancer: a systematic review and dose–response meta-analysis. Prostate Cancer Prostatic Dis 21, 319–336 (2018). https://doi.org/10.1038/s41391-017-0005-x

Download citation

Further reading