Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Special Article
  • Published:

Molecular events in brain bilirubin toxicity revisited

Abstract

The mechanisms involved in bilirubin neurotoxicity are still far from being fully elucidated. Several different events concur to damage mainly the neurons among which inflammation and alteration of the redox state play a major role. An imbalance of cellular calcium homeostasis has been recently described to be associated with toxic concentrations of bilirubin, and this disequilibrium may in turn elicit an inflammatory reaction. The different and age-dependent sensitivity to bilirubin damage must also be considered in describing the dramatic clinical picture of bilirubin-induced neurological damage (BIND) formerly known as kernicterus spectrum disorder (KSD). This review aims to critically address what is known and what is not in the molecular events of bilirubin neurotoxicity to provide hints for a better diagnosis and more successful treatments. Part of these concepts have been presented at the 38th Annual Audrey K. Brown Kernicterus Symposium of Pediatric American Society, Washington DC, May 1, 2023.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prosurvival mechanisms activated by neurons to counteract bilirubin induced OS.
Fig. 2: Bilirubin causes ER-stress as an early event that provokes iCa2+ increase and activation of the cytosolic pathway that leads to apoptosis.
Fig. 3: Pro-inflammatory effects of bilirubin.
Fig. 4: Bilirubin mediated glutamate-neurotoxicity.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Jayanti, S., Ghersi-Egea, J.-F., Strazielle, N., Tiribelli, C. & Gazzin, S. Severe neonatal hyperbilirubinemia and the brain: the old but still evolving story. Pediatr. Med. 4, 4–37 (2021).

  2. Gazzin, S. et al. Bilirubin accumulation and Cyp mRNA expression in selected brain regions of jaundiced Gunn rat pups. Pediatr. Res. 71, 653–660 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Gazzin, S., Jayanti, S. & Tiribelli, C. Models of bilirubin neurological damage: lessons learned and new challenges. Pediatr. Res. 93, 1838–1845 (2023).

  4. Diamond, I. & Schmid, R. Experimental bilirubin encephalopathy. The mode of entry of bilirubin-14C into the central nervous system. J. Clin. Invest. 45, 678–689 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sawasaki, Y., Yamada, N. & Nakajima, H. Developmental features of cerebellar hypoplasia and brain bilirubin levels in a mutant (Gunn) rat with hereditary hyperbilirubinaemia. J. Neurochem. 27, 577–583 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Barateiro, A. et al. Reduced myelination and increased glia reactivity resulting from severe neonatal hyperbilirubinemia. Mol. Pharmacol. 89, 84–93 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hansen, T. W. R. Bilirubin entry into and clearance from rat brain during hypercarbia and hyperosmolality. Pediatr. Res. 39, 72–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Hansen, T. W. R., Øyasœter, S., Stiris, T. & Bratlid, D. Effects of sulfisoxazole, hypercarbia, and hyperosmolality on entry of bilirubin and albumin into brain regions in young rats. NEO 56, 22–30 (1989).

    CAS  Google Scholar 

  9. Hansen, T. W. R. Pioneers in the scientific study of neonatal jaundice and kernicterus. Pediatrics 106, e15 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Hansen, T. W. R. Bilirubin brain toxicity. J. Perinatol. 21, S48–S51 (2001).

    Article  PubMed  Google Scholar 

  11. Dal Ben, M., Bottin, C., Zanconati, F., Tiribelli, C. & Gazzin, S. Evaluation of region selective bilirubin-induced brain damage as a basis for a pharmacological treatment. Sci. Rep. 7, 41032 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Conlee, J. W. & Shapiro, S. M. Development of cerebellar hypoplasia in jaundiced Gunn rats: a quantitative light microscopic analysis. Acta Neuropathol. 93, 450–460 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Vianello, E. et al. Histone acetylation as a new mechanism for bilirubin-induced encephalopathy in the Gunn rat. Sci. Rep. 8, 13690 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Bortolussi, G. et al. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer. FASEB J. 26, 1052–1063 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nguyen, N. et al. Disruption of the Ugt1 locus in mice resembles human crigler-najjar Type I disease*. J. Biol. Chem. 283, 7901–7911 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Hu, W. et al. Ex vivo 1H nuclear magnetic resonance spectroscopy reveals systematic alterations in cerebral metabolites as the key pathogenetic mechanism of bilirubin encephalopathy. Mol. Brain 7, 87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Roger, C., Koziel, V., Vert, P. & Nehlig, A. Effects of bilirubin infusion on local cerebral glucose utilization in the immature rat. Develop. Brain Res. 76, 115–130 (1993).

    Article  CAS  Google Scholar 

  18. Roger, C., Koziel, V., Vert, P. & Nehlig, A. Regional cerebral metabolic consequences of bilirubin in rat depend upon post-gestational age at the time of hyperbilirubinemia. Develop. Brain Res. 87, 194–202 (1995).

    Article  CAS  Google Scholar 

  19. Keino, H. et al. Mode of prevention by phototherapy of cerebellar hypoplasia in a new Sprague-Dawley strain of jaundiced gunn rats. PNE 12, 145–150 (1985).

    Google Scholar 

  20. Bortolussi, G. et al. Age-dependent pattern of cerebellar susceptibility to bilirubin neurotoxicity in vivo in mice. Dis. Models Mech. 7, 1057–1068 (2014).

    Google Scholar 

  21. Chang, F.-Y., Lee, C.-C., Huang, C.-C. & Hsu, K.-S. Unconjugated bilirubin exposure impairs hippocampal long-term synaptic plasticity. PLoS One 4, e5876 (2009).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Robert, M. C. et al. Alterations in the cell cycle in the cerebellum of hyperbilirubinemic gunn rat: a possible link with apoptosis? PLoS One 8, e79073 (2013).

  23. Mancuso, C. et al. Bilirubin as an endogenous modulator of neurotrophin redox signaling. J. Neurosci. Res. 86, 2235–2249 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Falcão, A. S. et al. Apoptosis and impairment of neurite network by short exposure of immature rat cortical neurons to unconjugated bilirubin increase with cell differentiation and are additionally enhanced by an inflammatory stimulus. J. Neurosci. Res. 85, 1229–1239 (2007).

    Article  PubMed  Google Scholar 

  25. Llido, J. P. et al. Bilirubin-Induced transcriptomic imprinting in neonatal hyperbilirubinemia. Biology 12, 834 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bianco, A. et al. The extent of intracellular accumulation of bilirubin determines its anti- or pro-oxidant effect. Int. J. Mol. Sci. 21, 8101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brito, M. A. et al. Bilirubin injury to neurons: contribution of oxidative stress and rescue by glycoursodeoxycholic acid. Neurotoxicology 29, 259–269 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Silva, R. F., Rodrigues, C. M. & Brites, D. Bilirubin-induced apoptosis in cultured rat neural cells is aggravated by chenodeoxycholic acid but prevented by ursodeoxycholic acid. J. Hepatol. 34, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Oakes, G. H. & Bend, J. R. Early steps in bilirubin-mediated apoptosis in murine hepatoma (Hepa 1c1c7) cells are characterized by aryl hydrocarbon receptor-independent oxidative stress and activation of the mitochondrial pathway. J. Biochem. Mol. Toxicol. 19, 244–255 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Giraudi, P. J., Bellarosa, C., Coda-Zabetta, C. D., Peruzzo, P. & Tiribelli, C. Functional induction of the cystine-glutamate exchanger system Xc(-) activity in SH-SY5Y cells by unconjugated bilirubin. PLoS ONE 6, e29078 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Deganuto, M. et al. A proteomic approach to the bilirubin-induced toxicity in neuronal cells reveals a protective function of DJ-1 protein. Proteomics 10, 1645–1657 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Qaisiya, M., Coda Zabetta, C. D., Bellarosa, C. & Tiribelli, C. Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway. Cell. Signal. 26, 512–520 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Brini, M., Calì, T., Ottolini, D. & Carafoli, E. Neuronal calcium signaling: function and dysfunction. Cell Mol. Life Sci. 71, 2787–2814 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Watchko, J. F. Kernicterus and the molecular mechanisms of bilirubin-induced CNS injury in newborns. Neuromol. Med. 8, 513–529 (2006).

    Article  CAS  Google Scholar 

  35. Rodrigues, C. M. P. et al. Perturbation of membrane dynamics in nerve cells as an early event during bilirubin-induced apoptosis. J. Lipid Res. 43, 885–894 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Brito, M. A., Brites, D. & Butterfield, D. A. A link between hyperbilirubinemia, oxidative stress and injury to neocortical synaptosomes. Brain Res. 1026, 33–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Hankø, E., Hansen, T. W. R., Almaas, R., Lindstad, J. & Rootwelt, T. Bilirubin induces apoptosis and necrosis in human NT2-N neurons. Pediatr. Res. 57, 179–184 (2005).

    Article  PubMed  Google Scholar 

  38. Zhang, B., Yang, X. & Gao, X. Taurine protects against bilirubin-induced neurotoxicity in vitro. Brain Res. 1320, 159–167 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Calligaris, R. et al. A transcriptome analysis identifies molecular effectors of unconjugated bilirubin in human neuroblastoma SH-SY5Y cells. BMC Genom. 10, 543 (2009).

    Article  Google Scholar 

  40. Schiavon, E., Smalley, J. L., Newton, S., Greig, N. H. & Forsythe, I. D. Neuroinflammation and ER-stress are key mechanisms of acute bilirubin toxicity and hearing loss in a mouse model. PLoS ONE 13, e0201022 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Qaisiya, M., Mardešić, P., Pastore, B., Tiribelli, C. & Bellarosa, C. The activation of autophagy protects neurons and astrocytes against bilirubin-induced cytotoxicity. Neurosci. Lett. 661, 96–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Verkhratsky, A. The endoplasmic reticulum and neuronal calcium signalling. Cell Calcium 32, 393–404 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Dong, Z., Saikumar, P., Weinberg, J. M. & Venkatachalam, M. A. Calcium in cell injury and death. Annu Rev. Pathol. 1, 405–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Qaisiya, M. et al. Bilirubin-induced ER stress contributes to the inflammatory response and apoptosis in neuronal cells. Arch. Toxicol. 91, 1847–1858 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Rauti, R., Qaisiya, M., Tiribelli, C., Ballerini, L. & Bellarosa, C. Bilirubin disrupts calcium homeostasis in neonatal hippocampal neurons: a new pathway of neurotoxicity. Arch. Toxicol. 94, 845–855 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Vaz, A. R. et al. Pro-inflammatory cytokines intensify the activation of NO/NOS, JNK1/2 and caspase cascades in immature neurons exposed to elevated levels of unconjugated bilirubin. Exp. Neurol. 229, 381–390 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Rodrigues, C. M. P., Solá, S. & Brites, D. Bilirubin induces apoptosis via the mitochondrial pathway in developing rat brain neurons. Hepatology 35, 1186–1195 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Silva, S. L. et al. Neuritic growth impairment and cell death by unconjugated bilirubin is mediated by NO and glutamate, modulated by microglia, and prevented by glycoursodeoxycholic acid and interleukin-10. Neuropharmacology 62, 2398–2408 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Fernandes, A. et al. Bilirubin as a determinant for altered neurogenesis, neuritogenesis, and synaptogenesis. Devel Neurobio 69, 568–582 (2009).

    Article  CAS  Google Scholar 

  50. Chen, H. C., Tsai, D. J., Wang, C. H. & Chen, Y. C. An electron microscopic and radioautographic study on experimental kernicterus. I. Bilirubin transport via astroglia. Am. J. Pathol. 56, 31–58 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Silva, S. L. et al. Features of bilirubin-induced reactive microglia: from phagocytosis to inflammation. Neurobiol. Dis. 40, 663–675 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Gordo, A. C. et al. Unconjugated bilirubin activates and damages microglia. J. Neurosci. Res. 84, 194–201 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Vaz, A. R., Falcão, A. S., Scarpa, E., Semproni, C. & Brites, D. Microglia susceptibility to free bilirubin is age-dependent. Front. Pharmacol. 11, 1012 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brites, D. Bilirubin injury to neurons and glial cells: new players, novel targets, and newer insights. Semin. Perinatol. 35, 114–120 (2011).

    Article  PubMed  Google Scholar 

  55. Brites, D. The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front. Pharm. 3, 88 (2012).

    Article  Google Scholar 

  56. Fernandes, A., Falcão, A. S., Silva, R. F. M., Brito, M. A. & Brites, D. MAPKs are key players in mediating cytokine release and cell death induced by unconjugated bilirubin in cultured rat cortical astrocytes. Eur. J. Neurosci. 25, 1058–1068 (2007).

    Article  PubMed  Google Scholar 

  57. Fernandes, A., Silva, R. F. M., Falcão, A. S., Brito, M. A. & Brites, D. Cytokine production, glutamate release and cell death in rat cultured astrocytes treated with unconjugated bilirubin and LPS. J. Neuroimmunol. 153, 64–75 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Blondel, S. et al. Vascular network expansion, integrity of blood–brain interfaces, and cerebrospinal fluid cytokine concentration during postnatal development in the normal and jaundiced rat. Fluids Barriers CNS 19, 47 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mousa, A. & Bakhiet, M. Role of cytokine signaling during nervous system development. Int. J. Mol. Sci. 14, 13931–13957 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Barateiro, A. et al. Unconjugated bilirubin restricts oligodendrocyte differentiation and axonal myelination. Mol. Neurobiol. 47, 632–644 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Brito, M. A. et al. Cerebellar axon/myelin loss, angiogenic sprouting, and neuronal increase of vascular endothelial growth factor in a preterm infant with kernicterus. J. Child Neurol. 27, 615–624 (2012).

    Article  PubMed  Google Scholar 

  62. Barateiro, A., Domingues, H. S., Fernandes, A., Relvas, J. B. & Brites, D. Rat cerebellar slice cultures exposed to bilirubin evidence reactive gliosis, excitotoxicity and impaired myelinogenesis that is prevented by AMPA and TNF-α inhibitors. Mol. Neurobiol. 49, 424–439 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Falcão, A. S., Fernandes, A., Brito, M. A., Silva, R. F. M. & Brites, D. Bilirubin-induced immunostimulant effects and toxicity vary with neural cell type and maturation state. Acta Neuropathol. 112, 95–105 (2006).

    Article  PubMed  Google Scholar 

  64. Falcão, A. S., Fernandes, A., Brito, M. A., Silva, R. F. M. & Brites, D. Bilirubin-induced inflammatory response, glutamate release, and cell death in rat cortical astrocytes are enhanced in younger cells. Neurobiol. Dis. 20, 199–206 (2005).

    Article  PubMed  Google Scholar 

  65. Rodrigues, C. M. P., Solá, S., Silva, R. F. M. & Brites, D. Aging confers different sensitivity to the neurotoxic properties of unconjugated bilirubin. Pediatr. Res. 51, 112–118 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Jašprová, J. et al. Neuro-inflammatory effects of photodegradative products of bilirubin. Sci. Rep. 8, 7444 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  67. Vodret, S. et al. Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia. Brain Behav. Immun. 70, 166–178 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Gazzin, S. et al. Curcumin prevents cerebellar hypoplasia and restores the behavior in hyperbilirubinemic gunn rat by a pleiotropic effect on the molecular effectors of brain damage. Int. J. Mol. Sci. 22, 299 (2021).

    Article  CAS  Google Scholar 

  69. Arauchi, R. et al. Gunn rats with glial activation in the hippocampus show prolonged immobility time in the forced swimming test and tail suspension test. Brain Behav. 8, e01028 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Limoa, E. et al. Electroconvulsive shock attenuated microgliosis and astrogliosis in the hippocampus and ameliorated schizophrenia-like behavior of Gunn rat. J. Neuroinflamm. 13, 230 (2016).

    Article  Google Scholar 

  71. Liaury, K. et al. Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model. J. Neuroinflamm. 9, 56 (2012).

    Article  CAS  Google Scholar 

  72. Mahmoud, S., Gharagozloo, M., Simard, C. & Gris, D. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells 8, 184 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Grojean, S., Koziel, V., Vert, P. & Daval, J. L. Bilirubin induces apoptosis via activation of NMDA receptors in developing rat brain neurons. Exp. Neurol. 166, 334–341 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Grojean, S., Lievre, V., Koziel, V., Vert, P. & Daval, J.-L. Bilirubin exerts additional toxic effects in hypoxic cultured neurons from the developing rat brain by the recruitment of glutamate neurotoxicity. Pediatr. Res. 49, 507–513 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. McDonald, J. W., Shapiro, S. M., Silverstein, F. S. & Johnston, M. V. Role of glutamate receptor-mediated excitotoxicity in bilirubin-induced brain injury in the Gunn Rat Model. Exp. Neurol. 150, 21–29 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Granzotto, A., Canzoniero, L. M. T. & Sensi, S. L. A neurotoxic ménage-à-trois: glutamate, calcium, and zinc in the excitotoxic cascade. Front. Mol. Neurosci. 13, 600089 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kaindl, A. M. & Ikonomidou, C. Glutamate antagonists are neurotoxins for the developing brain. Neurotox. Res. 11, 203–218 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Lau, A. & Tymianski, M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflug. Arch. - Eur. J. Physiol. 460, 525–542 (2010).

    Article  CAS  Google Scholar 

  79. Riordan, S. M. & Shapiro, S. M. Review of bilirubin neurotoxicity I: molecular biology and neuropathology of disease. Pediatr. Res. 87, 327–331 (2020).

  80. Wisnowski, J. L., Panigrahy, A., Painter, M. J. & Watchko, J. F. Magnetic resonance imaging of bilirubin encephalopathy: current limitations and future promise. Semin. Perinatol. 38, 422–428 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Das, S. & van Landeghem, F. K. H. Clinicopathological spectrum of bilirubin encephalopathy/kernicterus. Diagnostics 9, 24 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nahar, L., Delacroix, B. M. & Nam, H. W. The role of parvalbumin interneurons in neurotransmitter balance and neurological disease. Front. Psychiatry 12, 679960 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Shapiro, S. M. Chronic bilirubin encephalopathy: diagnosis and outcome. Semin Fetal Neonatal Med. 15, 157–163 (2010).

    Article  PubMed  Google Scholar 

  84. Shapiro, S. M. & Riordan, S. M. Review of bilirubin neurotoxicity II: preventing and treating acute bilirubin encephalopathy and kernicterus spectrum disorders. Pediatr. Res. 87, 332–337 (2020).

  85. Watchko, J. F. & Tiribelli, C. Bilirubin-induced neurologic damage — mechanisms and management approaches. N. Engl. J. Med. 369, 2021–2030 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Maisels, M. J. Neonatal hyperbilirubinemia and kernicterus - not gone but sometimes forgotten. Early Hum. Dev. 85, 727–732 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Olusanya, B. O., Teeple, S. & Kassebaum, N. J. The contribution of neonatal jaundice to global child mortality: findings from the GBD 2016 study. Pediatrics 141, e20171471 (2018).

    Article  PubMed  Google Scholar 

  88. Shapiro, S. M. Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J. Perinatol. 25, 54–59 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Slusher, T. M. et al. Burden of severe neonatal jaundice: a systematic review and meta-analysis. BMJ Paediatr. Open 1, e000105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Daood, M. J., Hoyson, M. & Watchko, J. F. Lipid peroxidation is not the primary mechanism of bilirubin-induced neurologic dysfunction in jaundiced Gunn rat pups. Pediatr. Res. 72, 455–459 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Geiger, A. S., Rice, A. C. & Shapiro, S. M. Minocycline blocks acute bilirubin-induced neurological dysfunction in jaundiced Gunn rats. Neonatology 92, 219–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Lin, S. et al. Minocycline blocks bilirubin neurotoxicity and prevents hyperbilirubinemia-induced cerebellar hypoplasia in the Gunn rat. Eur. J. Neurosci. 22, 21–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Smith, K. & Leyden, J. J. Safety of doxycycline and minocycline: a systematic review. Clin. Ther. 27, 1329–1342 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Gourley, G. R. Bilirubin metabolism and kernicterus. Adv. Pediatr. 44, 173–229 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Greco, C. et al. Diagnostic performance analysis of the point-of-care bilistick system in identifying severe neonatal hyperbilirubinemia by a multi-country approach. EClinicalMedicine 1, 14–20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to all the colleagues involved at various levels with the challenging though difficult research in bilirubin. Supported by an intramural research grant from Italian Liver Foundation (FIF).

Funding

S.G., C.B., and C.T., were financed in part by an internal grant of the Fondazione Italiana Fegato - Onlus. XX by

Author information

Authors and Affiliations

Authors

Contributions

S.G., C.B., C.T.: substantial contribution to conception and design, acquisition, and revision of the literature, wrote the article. All the authors read and approved the final version of the article.

Corresponding author

Correspondence to Claudio Tiribelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazzin, S., Bellarosa, C. & Tiribelli, C. Molecular events in brain bilirubin toxicity revisited. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03084-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03084-9

Search

Quick links