Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Nintedanib-loaded exosomes from adipose-derived stem cells inhibit pulmonary fibrosis induced by bleomycin

Abstract

Background

Pulmonary fibrosis (PF) is a progressive lung disorder with a high mortality rate; its therapy remains limited due to the inefficiency of drug delivery. In this study, the system of drug delivery of nintedanib (Nin) by exosomes derived from adipose-derived stem cells (ADSCs-Exo, Exo) was developed to effectively deliver Nin to lung lesion tissue to ensure enhanced anti-fibrosis therapy.

Methods

The bleomycin (BLM)-induced PF model was constructed in vivo and in vitro. The effects of Exo-Nin on BLM-induced PF and its regulatory mechanism were examined using RT-qPCR, Western blotting, immunofluorescence, and H&E staining.

Results

We found Exo-Nin significantly improved BLM-induced PF in vivo and in vitro compared to Nin and Exo groups alone. Mechanistically, Exo-Nin alleviated fibrogenesis by suppressing endothelial–mesenchymal transition through the down-regulation of the TGF-β/Smad pathway and the attenuation of oxidative stress in vivo and in vitro.

Conclusions

Utilizing adipose stem cell-derived exosomes as carriers for Nin exhibited a notable enhancement in therapeutic efficacy. This improvement can be attributed to the regenerative properties of exosomes, indicating promising prospects for adipose-derived exosomes in cell-free therapies for PF.

Impact

  • The system of drug delivery of nintedanib (Nin) by exosomes derived from adipose-derived stem cells was developed to effectively deliver Nin to lung lesion tissue to ensure enhanced anti-fibrosis therapy.

  • The use of adipose stem cell-derived exosomes as the carrier of Nin may increase the therapeutic effect of Nin, which can be due to the regenerative properties of the exosomes and indicate promising prospects for adipose-derived exosomes in cell-free therapies for PF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification and Characterization of ADSCs and Exo-Nin.
Fig. 2: Role of Exo-Nin in BLM-induced PF in mice.
Fig. 3: Exo-Nin treatment alleviates BLM-induced EndoMT.
Fig. 4: Exo-Nin regulates BLM-induced EndoMT via TGF-β1/Smad pathway axis.
Fig. 5: Exo-Nin reduces oxidative stress induced by BLM.
Fig. 6: Scheme of Nin-loaded Exo preparation and PF therapy.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Richeldi, L., Collard, H. & Jones, M. Idiopathic pulmonary fibrosis. Lancet 389, 1941–1952 (2017).

    Article  PubMed  Google Scholar 

  2. Wynn, T. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wynn, T. & Ramalingam, T. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hutchinson, J., Fogarty, A., Hubbard, R. & McKeever, T. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur. Respir. J. 46, 795–806 (2015).

    Article  PubMed  Google Scholar 

  5. Somogyi, V. et al. The therapy of idiopathic pulmonary fibrosis: what is next? Eur. Respir. Rev. 28, 190021 (2019).

  6. Zhang, Z. et al. Crossed pathways for radiation-induced and immunotherapy-related lung injury. Fronti. Immunol. 12, 774807 (2021).

    Article  CAS  Google Scholar 

  7. McPherson, M., Economidou, S., Liampas, A., Zis, P. & Parperis, K. Management of MDA-5 antibody positive clinically amyopathic dermatomyositis associated interstitial lung disease: a systematic review. Semin. Arthritis Rheum. 53, 151959 (2022).

    Article  PubMed  Google Scholar 

  8. Mohammadalipour, A., Hashemnia, M., Goudarzi, F. & Ravan, A. Increasing the effectiveness of tyrosine kinase inhibitor (TKI) in combination with a statin in reducing liver fibrosis. Clin. Exp. Pharmacol. Physiol. 46, 1183–1193 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Neul, C. et al. Impact of membrane drug transporters on resistance to small-molecule tyrosine kinase inhibitors. Trends Pharmacol. Sci. 37, 904–932 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Pan, L. et al. Nintedanib ameliorates bleomycin-induced pulmonary fibrosis, inflammation, apoptosis, and oxidative stress by modulating PI3K/Akt/mTOR pathway in mice. Inflammation 46, 1531–1542 (2023).

  11. Ntolios, P. et al. Feasibility and safety of treatment switch from Pirfenidone to Nintedanib in patients with idiopathic pulmonary fibrosis: a real-world observational study. Eur. Rev. Med. Pharmacol. Sci. 25, 6326–6332 (2021).

    CAS  PubMed  Google Scholar 

  12. Jiang, L. et al. Engineering exosomes endowed with targeted delivery of triptolide for malignant melanoma therapy. ACS Appl. Mater. Interfaces 13, 42411–42428 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Ashour, A., El-Kamel, A., Mehanna, R., Mourad, G. & Heikal, L. Luteolin-loaded exosomes derived from bone marrow mesenchymal stem cells: a promising therapy for liver fibrosis. Drug Deliv. 29, 3270–3280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qu, M. et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson’s disease. J. Controlled Release 287, 156–166 (2018).

    Article  CAS  Google Scholar 

  15. Bunnell, B. Adipose tissue-derived mesenchymal stem cells. Cells 10, 3433 (2021).

  16. Li, J. et al. Paracrine factors from mesenchymal stem cells: a proposed therapeutic tool for acute lung injury and acute respiratory distress syndrome. Int. Wound J. 11, 114–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, L. et al. Mesenchymal stem cell-based treatments for COVID-19: status and future perspectives for clinical applications. Cell. Mol. Life Sci. 79, 142 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, X. et al. Exosomes from adipose-derived mesenchymal stem cells alleviate sepsis-induced lung injury in mice by inhibiting the secretion of IL-27 in macrophages. Cell Death Discov. 8, 18 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guy, R. & Offen, D. Promising opportunities for treating neurodegenerative diseases with mesenchymal stem cell-derived exosomes. Biomolecules 10, 1320 (2020).

  20. Shen, W., Zhao, X. & Li, S. Exosomes derived from ADSCs attenuate sepsis-induced lung injury by delivery of Circ-Fryl and regulation of the miR-490-3p/SIRT3 pathway. Inflammation 45, 331–342 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Estornut, C., Milara, J., Bayarri, M., Belhadj, N. & Cortijo, J. Targeting oxidative stress as a therapeutic approach for idiopathic pulmonary fibrosis. Front. Pharmacol. 12, 794997 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. van der Vliet, A., Janssen-Heininger, Y. & Anathy, V. Oxidative stress in chronic lung disease: from mitochondrial dysfunction to dysregulated redox signaling. Mol. Aspects Med. 63, 59–69 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hecker, L. et al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat. Med. 15, 1077–1081 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kilic, T., Ciftci, O., Cetin, A. & Kahraman, H. Preventive effect of chrysin on bleomycin-induced lung fibrosis in rats. Inflammation 37, 2116–2124 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Wolters, P., Collard, H. & Jones, K. Pathogenesis of idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 9, 157–179 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Gao, Z. et al. Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy. Acta Biomater. 126, 211–223 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Yu, W. et al. Nintedanib inhibits endothelial mesenchymal transition in bleomycin-induced pulmonary fibrosis via focal adhesion kinase activity reduction. Int. J. Mol. Sci. 23, 8193 (2022).

  28. Wollin, L. et al. Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis. Eur. Respir. J. 45, 1434–1445 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matute-Bello, G. et al. Fas (CD95) induces alveolar epithelial cell apoptosis in vivo: implications for acute pulmonary inflammation. Am. J. Pathol. 158, 153–161 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, S., Zhou, Y., Gu, X., Zhang, X. & Jia, Z. NLRX1/FUNDC1/NIPSNAP1-2 axis regulates mitophagy and alleviates intestinal ischaemia/reperfusion injury. Cell Prolif. 54, e12986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lv, H. et al. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol. 12, 311–324 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kheirollahi, V. et al. Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nat. Commun. 10, 2987 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang, Z. et al. Inhibition of Wnt10b/β-catenin signaling alleviates pulmonary fibrogenesis induced by paraquat in vivo and in vitro. Life Sci. 286, 120027 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Mirsaidi, A. et al. Telomere length, telomerase activity and osteogenic differentiation are maintained in adipose-derived stromal cells from senile osteoporotic SAMP6 mice. J. Tissue Eng. Regen. Med. 6, 378–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Fatima, F. & Nawaz, M. Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chin. J. Cancer 34, 541–553 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Jandl, K., Radic, N., Zeder, K., Kovacs, G. & Kwapiszewska, G. Pulmonary vascular fibrosis in pulmonary hypertension - the role of the extracellular matrix as a therapeutic target. Pharmacol. Ther. 247, 108438 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Almuqbil, R. et al. Dendrimer conjugation enhances tumor penetration and efficacy of doxorubicin in extracellular matrix-expressing 3D lung cancer models. Mol. Pharm. 17, 1648–1662 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Farooqi, A. et al. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol. Adv. 36, 328–334 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Kooijmans, S., Vader, P. & Schiffelers, R. Tumour-bound RNA-laden exosomes. Nat. Biomed. Eng. 1, 634–636 (2017).

    Article  PubMed  Google Scholar 

  40. Sheykhhasan, M. et al. Neuroprotective effects of coenzyme Q10-loaded exosomes obtained from adipose-derived stem cells in a rat model of Alzheimer’s disease. Biomed. Pharmacother. 152, 113224 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Wei, Z. et al. Exosomes for gene therapy effectively inhibit the endothelial-mesenchymal transition in mouse aortic endothelial cells. BMC Musculoskelet. Disord. 22, 1000 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mei, Q., Liu, Z., Zuo, H., Yang, Z. & Qu, J. Idiopathic pulmonary fibrosis: an update on pathogenesis. Front. Pharmacol. 12, 797292 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, W. et al. Nintedanib alleviates pulmonary fibrosis in vitro and in vivo by inhibiting the FAK/ERK/S100A4 signalling pathway. Int. Immunopharmacol. 113, 109409 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. C, L. et al. Common molecular pathways targeted by nintedanib in cancer and IPF: a bioinformatic study. Pulm. Pharmacol. Ther. 64, 101941 (2020).

    Article  PubMed  Google Scholar 

  45. Fernandez, I. & Eickelberg, O. The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proc. Am. Thorac. Soc. 9, 111–116 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Louzada, R. et al. NADPH oxidase DUOX1 sustains TGF-β1 signalling and promotes lung fibrosis. Eur. Respir. J. 57, 1901949 (2021).

  47. Meng, X., Nikolic-Paterson, D. & Lan, H. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Otoupalova, E., Smith, S., Cheng, G. & Thannickal, V. Oxidative stress in pulmonary fibrosis. Compr. Physiol. 10, 509–547 (2020).

    Article  PubMed  Google Scholar 

  49. Divya, T., Dineshbabu, V., Soumyakrishnan, S., Sureshkumar, A. & Sudhandiran, G. Celastrol enhances Nrf2 mediated antioxidant enzymes and exhibits anti-fibrotic effect through regulation of collagen production against bleomycin-induced pulmonary fibrosis. Chem. Biol. Interact. 246, 52–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Z. et al. Nrf2 antioxidant pathway suppresses Numb-mediated epithelial-mesenchymal transition during pulmonary fibrosis. Cell Death Dis. 9, 83 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Huai, B. & Ding, J. Atractylenolide III attenuates bleomycin-induced experimental pulmonary fibrosis and oxidative stress in rat model via Nrf2/NQO1/HO-1 pathway activation. Immunopharmacol. Immunotoxicol. 42, 436–444 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports by the Educational Commission of Fujian Province (No. JAT200702), as well as the Xiamen Medical College (No. K2020-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, L., Wang, J., Yi, X. et al. Nintedanib-loaded exosomes from adipose-derived stem cells inhibit pulmonary fibrosis induced by bleomycin. Pediatr Res (2024). https://doi.org/10.1038/s41390-024-03024-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-024-03024-7

Search

Quick links