Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Germline mutations in cancer predisposition genes among pediatric patients with cancer and congenital anomalies

Abstract

Background

Childhood cancer has a poorly known etiology, and investigating the underlying genetic background may provide novel insights. A recognized association exists between non-chromosomal birth defects and childhood cancer susceptibility.

Methods

We performed whole-exome sequencing and chromosomal microarray analysis in a cohort of childhood cancer (22 individuals, 50% with congenital anomalies) to unravel deleterious germline variants.

Results

A diagnostic yield of 14% was found, encompassing heterozygous variants in bona fide dominant Cancer Predisposition Genes (CPGs). Considering candidate and recessive CPGs harboring monoallelic variants, which were also deemed to play a role in the phenotype, the yield escalated to 45%. Most of the deleterious variants were mapped in genes not conventionally linked to the patient’s tumor type. Relevant findings were detected in 55% of the syndromic individuals, mostly variants potentially underlying both phenotypes.

Conclusion

We uncovered a remarkable prevalence of germline deleterious CPG variants, highlighting the significance of a comprehensive genetic analysis in pediatric cancer, especially when coupled with additional clinical signs. Moreover, our findings emphasized the potential for oligogenic inheritance, wherein multiple genes synergistically increase cancer risk. Lastly, our investigation unveiled potentially novel genotype-phenotype associations, such as SETD5 in neuroblastoma, KAT6A in gliomas, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis.

Impact

  • Novel gene-phenotype associations and candidate genes for pediatric cancer were unraveled, such as KAT6A in gliomas, SETD5 in neuroblastoma, JAG1 in hepatoblastomas, and TNFRSF13B in Langerhans cell histiocytosis.

  • Our analysis revealed a high frequency of deleterious germline variants, particularly in cases accompanied by additional clinical signs, highlighting the importance of a comprehensive genetic evaluation in childhood cancer.

  • Our findings also underscored the potential for oligogenic inheritance in pediatric cancer risk.

  • Understanding the cancer etiology is crucial for genetic counseling, often influencing therapeutic decisions and offering valuable insights into molecular targets for the development of oncological therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Delineation of the experimental approach.
Fig. 2: Pediatric cancer cases, associated clinical phenotypes, and detection of pathogenic/likely pathogenic variants.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sweet-Cordero, E. A. & Biegel, J. A. The genomic landscape of pediatric cancers: Implications for diagnosis and treatment. Science 363, 1170–1175 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Spector, L. G., Pankratz, N. & Marcotte, E. L. Genetic and nongenetic risk factors for childhood cancer. Pediatr. Clin. North Am. 62, 11–25 (2015).

    Article  PubMed  Google Scholar 

  3. Schraw, J. M. et al. Cancer diagnostic profile in children with structural birth defects: An assessment in 15,000 childhood cancer cases. Cancer 126, 3483–3492 (2020).

    Article  PubMed  Google Scholar 

  4. Plon, S. E. & Lupo, P. J. Genetic predisposition to childhood cancer in the genomic era. Annu. Rev. Genom. Hum. Genet. 20, 241–263 (2019).

    Article  CAS  Google Scholar 

  5. Lupo, P. J. et al. Association between birth defects and cancer risk among children and adolescents in a population-based assessment of 10 million live births. JAMA Oncol. 5, 1150–1158 (2019).

    Article  PubMed  Google Scholar 

  6. Rahman, N. Realizing the promise of cancer predisposition genes. Nature 505, 302–308 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sylvester, D. E. et al. Rare germline variants in childhood cancer patients suspected of genetic predisposition to cancer. Genes Chromosom. Cancer 61, 81–93 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Bertelsen, B. et al. High frequency of pathogenic germline variants within homologous recombination repair in patients with advanced cancer. NPJ Genom. Med. 4, 13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Capellini, A., Williams, M., Onel, K. & Huang, K. L. The functional hallmarks of cancer predisposition genes. Cancer Manag. Res. 13, 4351–4357 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Filbin, M. & Monje, M. Developmental origins and emerging therapeutic opportunities for childhood cancer. Nat. Med. 25, 367–376 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang, J. et al. Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 373, 2336–2346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).

    Article  PubMed  Google Scholar 

  13. Newman, S. et al. Genomes for kids: The scope of pathogenic mutations in pediatric cancer revealed by comprehensive dna and rna sequencing. Cancer Discov. 11, 3008–3027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krepischi, A. C. V. et al. Large germline copy number variations as predisposing factor in childhood neoplasms. Futur. Oncol. 10, 1627–1633 (2014).

    Article  CAS  Google Scholar 

  15. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Genome 00, 1–3 (2013).

  16. McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Challis, D. et al. An integrative variant analysis suite for whole exome next-generation sequencing data. BMC Bioinform. 13, 8 (2012).

  18. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article  PubMed  Google Scholar 

  20. Naslavsky, M. S. et al. Whole-genome sequencing of 1171 elderly admixed individuals from Brazil. Nat. Commun. 13, 1004 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ioannidis, N. M. et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stelzer, G. et al. VarElect: The phenotype-based variation prioritizer of the GeneCards Suite. BMC Genom. 17, 444 (2016).

  23. Köhler, S. et al. The human phenotype ontology in 2021. Nucleic Acids Res. 49, D1207–D1217 (2021).

    Article  PubMed  Google Scholar 

  24. Franklin by Genoox. https://franklin.genoox.com.

  25. Miller, D. T. et al. ACMG SF v3.1 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 24, 1407–1414 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Biesecker, L. G. & Harrison, S. M. The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet. Med. 20, 1687–1688 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro. Oncol. 23, 1231–1251 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aguiar, T. F. et al. Atypical presentation of a germline APC mutation in a child with supratentorial primitive neuroectodermal tumor. Pediatr. Blood Cancer 66, 1–2 (2019).

    Article  Google Scholar 

  30. Pires, S. F. et al. Expanding the role of SETD5 haploinsufficiency in neurodevelopment and neuroblastoma. Pediatr. Blood Cancer 67, 3–5 (2020).

    Article  Google Scholar 

  31. Dangoni, G. D. et al. A rare case of hepatoblastoma in a syndromic child with a de novo germline JAG1 mutation. Pediatr. Blood Cancer 70, e30311 (2023).

  32. Fisher, P. G. et al. Cancer in children with nonchromosomal birth defects. J. Pediatr. 160, 978–983 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gillentine, M. A. & Schaaf, C. P. The human clinical phenotypes of altered CHRNA7 copy number. Biochem. Pharmacol. 97, 352–362 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tham, E. et al. Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features. Am. J. Hum. Genet. 96, 507–513 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, F., Abmayr, S. M. & Workman, J. L. Regulation of KAT6 acetyltransferases and their roles in cell cycle progression, stem cell maintenance, and human disease. Mol. Cell. Biol. 36, 1900–1907 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wiesel-Motiuk, N. & Assaraf, Y. G. The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology. Drug Resist. Updat. 53, 100729 (2020).

    Article  PubMed  Google Scholar 

  37. Lv, D. et al. Histone acetyltransferase KAT6A upregulates PI3K/AKT signaling through TRIM24 binding. Cancer Res. 77, 6190–6201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pilarski, R. et al. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J. Natl Cancer Inst. 105, 1607–1616 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Hollander, M. C., Blumenthal, G. M. & Dennis, P. A. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat. Rev. Cancer 11, 289–301 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yehia, L., Keel, E. & Eng, C. The clinical spectrum of PTEN mutations. Annu. Rev. Med. 71, 103–116 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Morotti, A. et al. The role of PTEN in myeloid malignancies. Hematol. Rep. 7, 84–87 (2015).

    Article  CAS  Google Scholar 

  42. Yilmaz, Ö. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Aggerholm, A., Grønbaek, K., Guldberg, P. & Hokland, P. Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorders. Eur. J. Haematol. 65, 109–113 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Yehia, L. et al. Longitudinal analysis of cancer risk in children and adults with germline PTEN variants. JAMA Netw. Open 6, e239705 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Deliu, E. et al. Haploinsufficiency of the intellectual disability gene SETD5 disturbs developmental gene expression and cognition. Nat. Neurosci. 21, 1717–1727 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Johnsen, J. I., Dyberg, C. & Wickström, M. Neuroblastoma—A Neural Crest Derived Embryonal Malignancy. Front. Mol. Neurosci. 12, 9 (2019).

  47. Wang, L. L. et al. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. JNCI J. Natl Cancer Inst. 95, 669–674 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Cao, F. et al. Generalized metabolic bone disease and fracture risk in Rothmund-Thomson syndrome. Hum. Mol. Genet. 26, 3046–3055 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carlo, M. I. et al. Prevalence of germline mutations in cancer susceptibility genes in patients with advanced renal cell carcinoma. JAMA Oncol. 4, 1228–1235 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Truong, H. et al. Germline variants identified in patients with early-onset renal cell carcinoma referred for germline genetic testing. J. Urol. 207, 1151–1152 (2022).

    Google Scholar 

  51. Orgueira, A. M. et al. Detection of rare germline variants in the genomes of patients with b-cell neoplasms. Cancers (Basel). 13, 1–18 (2021).

    Google Scholar 

  52. Muskens, I. S. et al. Germline cancer predisposition variants and pediatric glioma: a population-based study in California. Neuro. Oncol. 22, 864–874 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maciaszek, J. L. et al. Enrichment of heterozygous germline RECQL4 loss-of-function variants in pediatric osteosarcoma. Cold Spring Harb. Mol. Case Stud. 5, 1–15 (2019).

  54. Martin-Giacalone, B. A., Rideau, T.-T., Scheurer, M. E., Lupo, P. J. & Wang, L. L. Cancer risk among RECQL4 heterozygotes. Cancer Genet. 262–263, 107–110 (2022).

    Article  PubMed  Google Scholar 

  55. Smetsers, S. et al. Heterozygote FANCD2 mutations associated with childhood T Cell ALL and testicular seminoma. Fam. Cancer 11, 661–665 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Reid, S. et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Genet. 39, 162–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. van Os, N. J. H. et al. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin. Genet. 90, 105–117 (2016).

    Article  PubMed  Google Scholar 

  58. Gruber, S. B. et al. BLM heterozygosity and the risk of colorectal. Cancer Sci. 297, 2013 (2002).

    CAS  Google Scholar 

  59. Allen, C. E., Merad, M. & McClain, K. L. Langerhans-cell histiocytosis. N. Engl. J. Med. 379, 856–868 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abla, O., Rollins, B. & Ladisch, S. Langerhans cell histiocytosis: progress and controversies. Br. J. Haematol. 187, 559–562 (2019).

    Article  PubMed  Google Scholar 

  61. Bogaert, D. J. A. et al. Genes associated with common variable immunodeficiency: One diagnosis to rule them all? J. Med. Genet. 53, 575–590 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Resnick, E. S., Moshier, E. L., Godbold, J. H. & Cunningham-Rundles, C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood 119, 1650–1657 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ardeniz, Ö. & Cunningham-Rundles, C. Granulomatous disease in common variable immunodeficiency. Clin. Immunol. 133, 198–207 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Waller, R. G. et al. Sequencing at lymphoid neoplasm susceptibility loci maps six myeloma risk genes. Hum. Mol. Genet. 30, 1142–1153 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, J. J. et al. The C104R mutant impairs the function of transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) through haploinsufficiency. J. Allergy Clin. Immunol. 126, 1234–1241.e2 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mather, M. W. et al. Mutation of TNFRSF13B in a child with 22q11 deletion syndrome associated with granulomatous lymphoproliferation. J. Allergy Clin. Immunol. 135, 559–561 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Thaventhiran, J. E. D. et al. Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature 583, 90–95 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gross, J. A. et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease: Impaired B cell maturation in mice lacking BLyS. Immunity 15, 289–302 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Celik, S., Tangi, F. & Oktenli, C. Increased frequency of Mediterranean fever gene variants in multiple myeloma. Oncol. Lett. 8, 1735–1738 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Stankovic, K. & Grateau, G. Auto inflammatory syndromes: diagnosis and treatment. Jt. Bone Spine 74, 544–550 (2007).

    Article  Google Scholar 

  71. Celik, S. et al. The rate of MEFV gene mutations in hematolymphoid neoplasms. Int. J. Immunogenet. 37, 387–391 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Oktenli, C. & Celik, S. High frequency of inherited variants in the MEFV gene in patients with hematologic neoplasms: a genetic susceptibility? Int. J. Hematol. 95, 380–385 (2012).

    Article  PubMed  Google Scholar 

  73. Sayan, O. et al. High frequency of inherited variants in the MEFV gene in acute lymphocytic leukemia. Indian J. Hematol. Blood Transfus. 27, 164–168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tariq, H. et al. Refractory hemophagocytic lymphohistiocytosis in an adult patient with occult ALK-Positive anaplastic large cell lymphoma and a heterozygous MEFV mutation. Leuk. Lymphoma 63, 495–498 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Rossi-Semerano, L., Hermeziu, B., Fabre, M. & Koné-Paut, I. Macrophage activation syndrome revealing familial mediterranean fever. Arthritis Care Res. 63, 780–783 (2011).

    Article  CAS  Google Scholar 

  76. Crasto, S., My, I. & Di Pasquale, E. The broad spectrum of LMNA cardiac diseases: from molecular mechanisms to clinical phenotype. Front. Physiol. 11, 1–11 (2020).

    Article  Google Scholar 

  77. Shin, J.-Y. & Worman, H. J. Molecular pathology of laminopathies. Annu. Rev. Pathol. Mech. Dis. 17, 159–180 (2022).

    Article  CAS  Google Scholar 

  78. Ko, A. et al. LZTR1 mutation mediates oncogenesis through stabilization of EGFR and AXL. Cancer Discov. 13, 702–723 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Piotrowski, A. et al. Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Nat. Genet. 46, 182–187 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Akhavanfard, S., Padmanabhan, R., Yehia, L., Cheng, F. & Eng, C. Comprehensive germline genomic profiles of children, adolescents and young adults with solid tumors. Nat. Commun. 11, 2206 (2020).

  81. Foss-Skiftesvik, J. et al. Redefining germline predisposition in children with molecularly characterized ependymoma: a population-based 20-year cohort. Acta Neuropathol. Commun. 10, 1–12 (2022).

    Article  Google Scholar 

  82. Bosse, D. van den. The role of germline heterozygous LZTR1 variants in pediatric cancer predisposition. (Utrecht University, 2022).

  83. Abe, T. et al. LZTR1 facilitates polyubiquitination and degradation of RAS-GTPases. Cell Death Differ. 27, 1023–1035 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Schindler, E. A. et al. Alagille syndrome and risk for hepatocellular carcinoma: need for increased surveillance in adults with mild liver phenotypes. Am. J. Med. Genet. Part A 185, 719–731 (2021).

    Article  CAS  PubMed  Google Scholar 

  85. Torrezan, G. T. et al. Mutational spectrum of the APC and MUTYH genes and genotype-phenotype correlations in Brazilian FAP, AFAP, and MAP patients. Orphanet J. Rare Dis. 8, 1–12 (2013).

    Article  Google Scholar 

  86. Attard, T. M., Giglio, P., Koppula, S., Snyder, C. & Lynch, H. T. Brain tumors in individuals with Familial Adenomatous Polyposis: A cancer registry experience and pooled case report analysis. Cancer 109, 761–766 (2007).

    Article  PubMed  Google Scholar 

  87. Mendoza, P. R. & Grossniklaus, H. E. The Biology of Retinoblastoma. Prog. Mol. Biol. Transl. Sci. 134, 503–516 (2015).

  88. Aretz, S. et al. MUTYH-associated polyposis (MAP): Evidence for the origin of the common European mutations p.Tyr179Cys and p.Gly396Asp by founder events. Eur. J. Hum. Genet. 22, 923–929 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Frans, G. et al. Conventional and single-molecule targeted sequencing method for specific variant detection in IKBKG while bypassing the IKBKGP1 pseudogene. J. Mol. Diagn. 20, 195–202 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Beetz, C. & Bauer, P. Dual genetic diagnoses - underappreciated ‘double trouble’. J. Biochem. Clin. Genet. 3, 52–53 (2020).

    Article  Google Scholar 

  91. McBride, K. A. et al. Li-Fraumeni syndrome: cancer risk assessment and clinical management. Nat. Rev. Clin. Oncol. 11, 260–271 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Pietragalla, A., Arcieri, M., Marchetti, C., Scambia, G. & Fagotti, A. Ovarian cancer predisposition beyond BRCA1 and BRCA2 genes. Int. J. Gynecol. Cancer 30, 1803–1810 (2020).

    Article  PubMed  Google Scholar 

  93. Palmero, E. I. et al. Detection of R337H, a germline TP53 mutation predisposing to multiple cancers, in asymptomatic women participating in a breast cancer screening program in Southern Brazil. Cancer Lett. 261, 21–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Custódio, G. et al. Impact of neonatal screening and surveillance for the TP53 R337H mutation on early detection of childhood adrenocortical tumors. J. Clin. Oncol. 31, 2619–2626 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pereira Caminha, I. Prevalência da mutação germinativa TP53 p.R337H na região metropolitana de Campinas e cidades circunvizinhas. (Universidade Estadual de Campinas, https://doi.org/10.47749/T/UNICAMP.2015.949595 (2015).

  96. Ribeiro, R. C. et al. An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc. Natl Acad. Sci. USA. 98, 9330–9335 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Seidinger, A. L. et al. Association of the highly prevalent TP53 R337H mutation with pediatric choroid plexus carcinoma and osteosarcoma in Southeast Brazil. Cancer 117, 2228–2235 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Custodio, G. et al. Increased incidence of choroid plexus carcinoma due to the germline TP53 R337H mutation in southern Brazil. PLoS One 6, e18015 (2011).

  99. Mastellaro, M. J. et al. Contribution of the TP53 R337H mutation to the cancer burden in southern Brazil: Insights from the study of 55 families of children with adrenocortical tumors. Cancer 123, 3150–3158 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Pinto, E. M. & Zambetti, G. P. What 20 years of research has taught us about the TP53 p.R337H mutation. Cancer 126, 4678–4686 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Schayek, H. et al. The rate of recurrent BRCA1, BRCA2, and TP53 mutations in the general population, and unselected ovarian cancer cases, in Belo Horizonte, Brazil. Cancer Genet. 209, 50–52 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Mathias, C. et al. Frequency of the TP53 R337H variant in sporadic breast cancer and its impact on genomic instability. Sci. Rep. 10, 1–12 (2020).

    Article  Google Scholar 

  103. Achatz, M. I. & Zambetti, G. P. The Inherited p53 Mutation in the Brazilian Population. Cold Spring Harb. Perspect. Med. 6, a026195 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jara, L. et al. Mutations in BRCA1, BRCA2 and other breast and ovarian cancer susceptibility genes in Central and South American populations. Biol. Res. 50, 35 (2017).

  105. Diets, I. J. et al. High yield of pathogenic germline mutations causative or likely causative of the cancer phenotype in selected children with cancer. Clin. Cancer Res. 24, 1594–1603 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the patients and their families for participating in this study.

Funding

This research was carried out with financial support from CAPES (88887.606266/2021-00); FAPESP (2013/08028-1, 2018/21047-9, 2018/05961-2, 2022/03980-5); CNPq (grant number 305806/2019-0; 305101/2022-6). We are grateful for the confidence of these institutions in investing public funds in our research.

Author information

Authors and Affiliations

Authors

Contributions

A.C.V.K: study design. G.D.D., L.N.S., E.M.N., C.S.C.V., S.M.M.S., V.O.F. participant enrollment and data collection. G.D.D., A.C.B.T., S.S.C., A.C.V.K.: data analysis and interpretation. G.D.D., A.C.V.K.: manuscript writing. G.D.D., A.C.B.T., L.M.L.C., M.C.M., A.C.V.K. manuscript revision. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Ana Cristina V. Krepischi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national guidelines on human experimentation (Resolution 466/12) and with the Helsinki Declaration of 1975, as revised in 2008. The project was approved by the Research Ethics Committee of the Clinical Hospital - Faculty of Medicine of the University of São Paulo (CAAE 47277115.0.0000.0068), and Institute of Biosciences (University of São Paulo, São Paulo, Brazil) (CAAE 09163818.4.0000.5464). Informed consent was obtained from all study participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementry Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dangoni, G.D., Teixeira, A.C.B., da Costa, S.S. et al. Germline mutations in cancer predisposition genes among pediatric patients with cancer and congenital anomalies. Pediatr Res 95, 1346–1355 (2024). https://doi.org/10.1038/s41390-023-03000-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-03000-7

Search

Quick links