Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Asymptomatic viruses detectable in saliva in the first year of life: a narrative review

Abstract

Viral infections are common in children. Many can be asymptomatic or have delayed health consequences. In view of increasing availability of point-of-care viral detection technologies, with possible application in newborn screening, this review aimed to (1) identify potentially asymptomatic viruses detectable in infants under one year old, via saliva/nasopharyngeal swab, and (2) describe associations between viruses and long-term health conditions. We systematically searched Embase(Ovid), Medline(Ovid) and PubMed, then further searched the literature in a tiered approach. From the 143 articles included, 28 potentially asymptomatic viruses were identified. Our second search revealed associations with a range of delayed health conditions, with most related to the severity of initial symptoms. Many respiratory viruses were linked with development of recurrent wheeze or asthma. Of note, some potentially asymptomatic viruses are linked with later non-communicable diseases: adenovirus serotype 36 and obesity, Enterovirus-A71 associated Hand, Foot, Mouth Disease and Attention-Deficit Hyperactivity Disorder, Ebstein Barr Virus (EBV) and malignancy, EBV and multiple sclerosis, HHV-6 and epilepsy, HBoV-1 and lung fibrosis and Norovirus and functional gastrointestinal disorders. Our review identified many potentially asymptomatic viruses, detectable in early life with potential delayed health consequences, that could be important to screen for in the future using rapid point-of-care viral detection methods.

Impact

  • Novel point-of-care viral detection technologies enable rapid detection of viruses, both old and emerging. In view of increasing capability to screen for viruses, this is the first review to explore which potentially asymptomatic viruses, that are detectable using saliva and/or nasopharyngeal swabs in infants less than one year of age, are associated with delayed adverse health conditions. Further research into detecting such viruses in early life and their delayed health outcomes may pave new ways to prevent non-communicable diseases in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flowchart of Aim 1 literature search.
Fig. 2: World Map figure showing countries/regions of included studies.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. Boyer, S. G. & Boyer, K. M. Update on Torch Infections in the Newborn Infant. Newborn Infant Nurs. Rev. 4, 70–80 (2004).

    Article  Google Scholar 

  2. Boppana, S. B., Ross, S. A. & Fowler, K. B. Congenital cytomegalovirus infection: clinical outcome. Clin. Infect. Dis. 57 Suppl 4, S178-181 (2013).

  3. Kimberlin, D. W. et al. Valganciclovir for symptomatic congenital cytomegalovirus disease. N. Engl. J. Med. 372, 933–943 (2015).

  4. Ross, S. A. & Boppana, S. B. Congenital cytomegalovirus infection: outcome and diagnosis. Semin. Pediatr. Infect. Dis. 16, 44–49 (2005).

    Article  PubMed  Google Scholar 

  5. Aloisi, F., Giovannoni, G. & Salvetti, M. Epstein-Barr virus as a cause of multiple sclerosis: opportunities for prevention and therapy. Lancet Neurol. 22, 338–349 (2023).

    Article  PubMed  Google Scholar 

  6. Wilson, J. M. G., Jungner, G. & World Health, O. Public Health Papers no. 34 (World Health Organization, 1968).

  7. Broughton, J. P. et al. Crispr–Cas12-based detection of Sars-Cov-2. Nat. Biotechnol. 38, 870–874 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boppana, S. B. et al. Saliva polymerase-chain-reaction assay for cytomegalovirus screening in newborns. N. Engl. J. Med. 364, 2111–2118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, P. Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. BMJ 339, b2535 (2009).

  10. Rawlinson, W. D. et al. Congenital cytomegalovirus infection in pregnancy and the neonate: consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect. Dis. 17, e177–e188 (2017).

    Article  PubMed  Google Scholar 

  11. Software, C. S. R. (Veritas Health Innovation Melbourne, 2018).

  12. Charlier, C. et al. Prolonged maternal shedding and maternal-fetal transmission of measles virus. Clin. Infect. Dis. 72, 1631–1634 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Wade, T. J. et al. Asymptomatic norovirus infection associated with swimming at a tropical beach: a prospective cohort study. PLoS ONE 13, e0195056 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Alenquer, M. et al. Saliva molecular testing bypassing Rna extraction is suitable for monitoring and diagnosing Sars-Cov-2 infection in children. PLoS ONE 17, e0268388 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernandez-Gonzalez, M. et al. Performance of saliva specimens for the molecular detection of Sars-Cov-2 in the Community Setting: Does Sample Collection Method Matter? J. Clin. Microbiol. 59, e03033-20 (2021).

  16. Zhuang, Z.-L., Jin, Y., Yan, K.-L. & Cheng, W.-X. Study of the association between histo-blood group antigens and norovirus infection in Chinese children. Arch. Virol. 162, 3511–3515 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Delgado-Corcoran, C. et al. Respiratory testing and hospital outcomes in asymptomatic infants undergoing heart surgery. Pediatr. Cardiol. 40, 339–348 (2019).

    Article  PubMed  Google Scholar 

  18. Munywoki, P. K. et al. Frequent asymptomatic respiratory syncytial virus infections during an epidemic in a rural Kenyan household cohort. J. Infect. Dis. 212, 1711–1718 (2015).

    Article  PubMed  Google Scholar 

  19. Roeleveld, P. P. et al. Rhinovirus detection in the nasopharynx of children undergoing cardiac surgery is not associated with longer picu length of stay: results of the impact of rhinovirus infection after cardiac surgery in kids (risk) study. Pediatr. Crit. Care Med. 22, e79–e90 (2021).

    Article  PubMed  Google Scholar 

  20. Biasucci, G. et al. Safe perinatal management of neonates born to Sars-Cov-2 positive mothers at the epicenter of the Italian epidemic. Front. Pediatr. 8, 565522 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Capozza, M. et al. Perinatal transmission and outcome of neonates born to Sars-Cov-2-positive mothers: the experience of 2 highly endemic Italian regions. Neonatology 118, 665–671 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Diercks, G. R., Park, B. J., Myers, L. B. & Kwolek, C. J. Asymptomatic Covid-19 infection in a child with nasal foreign body. Int J. Pediatr. Otorhinolaryngol. 135, 110092 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Flemming, S. et al. Safety of elective abdominal and vascular surgery during the Covid-19 pandemic: a retrospective single-center study. Eur. J. Med. Res. 26, 112 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hascoet, J. M. et al. Case series of Covid-19 asymptomatic newborns with possible intrapartum transmission of Sars-Cov-2. Front. Pediatr. 8, 568979 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hoehl, S. et al. Longitudinal testing for respiratory and gastrointestinal shedding of severe acute respiratory syndrome coronavirus 2 (Sars-Cov-2) in day care centers in hesse, Germany. Clin. Infect. Dis. 73, e3036–e3041 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Kam, K. Q. et al. A Well Infant with Coronavirus Disease 2019 with High Viral Load. Clin. Infect. Dis. 71, 847–849 (2020).

  27. Lopez-Martinez, B. et al. Screening for Covid-19 in children undergoing elective invasive procedures. Indian J. Pediatr. 89, 651–656 (2022).

    Article  PubMed  Google Scholar 

  28. Mendoza-Hernández, M. et al. Probable case of vertical transmission of Sars-Cov-2 in a newborn in Mexico. Neonatology 118, 364–367 (2021).

    Article  PubMed  Google Scholar 

  29. Pavithran, K. et al. Universal screening of patients with cancer for Covid-19: results from an observational, retrospective cohort study in Kerala, India. Indian J. Med. Paediatr. Oncol. 43, 131–138 (2022).

    Article  Google Scholar 

  30. Sastry, S. R. et al. Universal screening for the Sars-Cov-2 virus on hospital admission in an area with low Covid-19 prevalence. Infect. Control Hospital Epidemiol. 41, 1231–1233 (2020).

    Article  Google Scholar 

  31. Sharma, R., Seth, S., Yadav, S., Mishra, P. & Mukhopadhyay, S. Perinatal outcome and possible vertical transmission of coronavirus disease 2019: experience from North India. Clin. Exp. Pediatr. 64, 239–246 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carbayo-Jimenez, T. et al. Severe acute respiratory syndrome coronavirus 2 vertical transmission from an asymptomatic mother. Pediatr. Infect. Dis. J. 40, e115–e117 (2021).

    Article  PubMed  Google Scholar 

  33. Edmond, K. et al. Long term sequelae from childhood pneumonia; systematic review and meta-analysis. PLoS ONE 7, e31239 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  34. Wadell, G., Varsányi, T. M., Lord, A. & Sutton, R. N. Epidemic outbreaks of adenovirus 7 with special reference to the pathogenicity of adenovirus genome type 7b. Am. J. Epidemiol. 112, 619–628 (1980).

    Article  CAS  PubMed  Google Scholar 

  35. Similä, S., Jouppila, R., Salmi, A. & Pohjonen, R. Encephaloningitis in children associated with an adenovirus type 7 epidemic. Acta Paediatr. Scand. 59, 310–316 (1970).

    Article  PubMed  Google Scholar 

  36. Schwartz, K. L. et al. Adenovirus-associated central nervous system disease in children. J. Pediatr. 205, 130–137 (2019).

    Article  PubMed  Google Scholar 

  37. Munoz, F. M., Piedra, P. A. & Demmler, G. J. Disseminated adenovirus disease in immunocompromised and immunocompetent children. Clin. Infect. Dis. 27, 1194–1200 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Xu, M. Y. et al. Human Adenovirus 36 Infection Increased the Risk of Obesity: A Meta-Analysis Update. Medicine (Baltimore) 94, e2357 (2015).

  39. Chuang, Y. Y. & Huang, Y. C. Enteroviral infection in neonates. J. Microbiol Immunol. Infect. 52, 851–857 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Hsia, S. H., Lin, J. J., Chan, O. W. & Lin, T. Y. Cardiopulmonary failure in children infected with enterovirus A71. J. Biomed. Sci. 27, 53 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin, J. Y. & Shih, S. R. Cell and tissue tropism of enterovirus 71 and other enteroviruses infections. J. Biomed. Sci. 21, 18 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jones, E. et al. Outcomes following severe hand foot and mouth disease: a systematic review and meta-analysis. Eur. J. Paediatr. Neurol. 22, 763–773 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fugl, A. & Andersen, C. L. Epstein-Barr virus and its association with disease - a review of relevance to general practice. BMC Fam. Pract. 20 (2019).

  44. Straus, S. E. The chronic mononucleosis syndrome. J. Infect. Dis. 157, 405–412 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Pinninti, S., Hough-Telford, C., Pati, S. & Boppana, S. Cytomegalovirus and Epstein-Barr virus infections. Pediatr. Rev. 37, 223–234 (2016).

    Article  PubMed  Google Scholar 

  46. Cohen, J. I. et al. Characterization and treatment of chronic active epstein-barr virus disease: a 28-year experience in the United States. Blood 117, 5835–5849 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kimura, H. & Cohen, J. I. Chronic active Epstein-Barr virus disease. Front. Immunol. 8, 1867 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Toivonen, L. et al. Rhinovirus infections in the first 2 years of life. Pediatrics 138, e20161309 (2016).

  49. Del Rosal, T. et al. Recurrent wheezing and asthma after bocavirus bronchiolitis. Allergol. Immunopathol. 44, 410–414 (2016).

    Article  Google Scholar 

  50. Schildgen, O. & Schildgen, V. Respiratory infections with human bocavirus. Clin. Infect. Dis. 62, 134 (2016).

    Article  PubMed  Google Scholar 

  51. Calvo, C. et al. Respiratory viral infections in a cohort of children during the first year of life and their role in the development of wheezing. Pediatrics 87, 104–110 (2017).

    Google Scholar 

  52. Kadambari, S., Harvala, H., Simmonds, P., Pollard, A. J. & Sadarangani, M. Strategies to improve detection and management of human parechovirus infection in young infants. Lancet Infect. Dis. 19, e51–e58 (2019).

    Article  PubMed  Google Scholar 

  53. Mack, I. et al. Rhinovirus infections and associated respiratory morbidity in infants: a prospective cohort study. Pediatr. Infect. Dis. J. 35, 1069–1074 (2016).

    Article  PubMed  Google Scholar 

  54. Zuurbier, R. P. et al. Asymptomatic viral presence in early life precedes recurrence of respiratory tract infections. Pediatr. Infect. Dis. J. 42, 59–65 (2023).

    Article  PubMed  Google Scholar 

  55. Sagrera, X. et al. Outbreaks of influenza a virus infection in neonatal intensive care units. Pediatr. Infect. Dis. J. 21, 196–200 (2002).

    Article  PubMed  Google Scholar 

  56. Rota, P. A. et al. Measles. Nat. Rev. Dis. Prim. 2, 16049 (2016).

    Article  PubMed  Google Scholar 

  57. Beckford, A. P., Kaschula, R. O. & Stephen, C. Factors associated with fatal cases of measles. a retrospective autopsy study. S. Afr. Med J. 68, 858–863 (1985).

    CAS  PubMed  Google Scholar 

  58. Feigin RD, C. J., et al Textbook of Pediatric Infectious Diseases 6th edn (Saunders, Philadelphia, 2009).

  59. Fields, B. N., Knipe D. M. & Howley, P. M. Fields’ Virology 1267 (Lippincott Williams & Wilkins, Philadelphia, 1996).

  60. Kagame, K. & Schwab, L. Childhood blindness: dateline Africa. Ophthalmic Surg. 20, 128–131 (1989).

    CAS  PubMed  Google Scholar 

  61. Ross, L. A., Kim, K. S., Mason, W. H. Jr. & Gomperts, E. Successful treatment of disseminated measles in a patient with acquired immunodeficiency syndrome: consideration of antiviral and passive immunotherapy. Am. J. Med. 88, 313–314 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Perry, R. T. & Halsey, N. A. The clinical significance of measles: a review. J. Infect. Dis. 189 (Suppl. 1), S4–S16 (2004).

    PubMed  Google Scholar 

  63. PR, D. Pediatric Neurology: Principles and Practice 670 (Mosby, St. Louis, 1994).

  64. Bernstein, D. I., Reuman, P. D. & Schiff, G. M. Rubeola (measles) and subacute sclerosing panencephalitis virus. In Infectious Diseases (eds Gorbach, S. L., Bartlett, J. G. & Blacklow, N. R.) 2135 (WB Saunders, Philadelphia 1998).

  65. Arbour, N., Day, R., Newcombe, J. & Talbot, P. J. Neuroinvasion by Human Respiratory Coronaviruses. J. Virol. 74, 8913–8921 (2000).

  66. Lopez-Leon, S. et al. Long-Covid in children and adolescents: a systematic review and meta-analyses. Sci. Rep. 12, 9950 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  67. Mehta, O. P., Bhandari, P., Raut, A., Kacimi, S. E. O. & Huy, N. T. Coronavirus disease (Covid-19): comprehensive review of clinical presentation. Front. Public Health 8, 582932 (2020).

    Article  PubMed  Google Scholar 

  68. Adeyinka, A., Bailey, K., Pierre, L. & Kondamudi, N. Covid 19 infection: pediatric perspectives. J. Am. Coll. Emerg. Physicians Open 2, e12375 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shantha, J. G., Crozier I. Fau - Yeh, S. & Yeh, S. An update on ocular complications of ebola virus disease. Curr. Opin. Ophthalmol. 28 (2017).

  70. Jacob, S. T. et al. Ebola virus disease. Nat. Rev. Dis. Prim. 6, 13 (2020).

    Article  MathSciNet  PubMed  Google Scholar 

  71. Howlett, P. J. et al. Case series of severe neurologic sequelae of ebola virus disease during epidemic, Sierra Leone. Emerg. Infect. Dis. 24, 1412–1421 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Caserta, M. T. et al. Early developmental outcomes of children with congenital Hhv-6 infection. Pediatrics 134, 1111–1118 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fotheringham, J. et al. Association of human herpesvirus-6b with mesial temporal lobe epilepsy. PLoS Med. 4, e180 (2007).

  74. Kawamura, Y. et al. Pathogenic role of human herpesvirus 6b infection in mesial temporal lobe epilepsy. J. Infect. Dis. 212, 1014–1021 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Yao, K., Crawford, J. R., Komaroff, A. L., Ablashi, D. V. & Jacobson, S. Review part 2: human herpesvirus-6 in central nervous system diseases. J. Med. Virol. 82, 1669–1678 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ward, K. N. Human herpesviruses-6 and -7 infections. Curr. Opin. Infect. Dis. 18, 247–252 (2005).

    Article  PubMed  Google Scholar 

  77. Hall, C. B. et al. Human herpesvirus-6 infection in children. a prospective study of complications and reactivation. N. Engl. J. Med 331, 432–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Pediatrics, A. A. O. Redbook: 2021-2024 Report of the Committee on Infectious Diseases 32 edn 422 (American Academy of Pediatrics, Itasca, IL 2021).

  79. Auriti, C. et al. Pregnancy and viral infections: mechanisms of fetal damage, diagnosis and prevention of neonatal adverse outcomes from cytomegalovirus to Sars-Cov-2 and zika virus. Biochimica et. Biophysica Acta Mol. Basis Dis. 1867, 166198 (2021).

    Article  CAS  Google Scholar 

  80. Ward, K. N., Gray, J. J. & Efstathiou, S. Brief report: primary human herpesvirus 6 infection in a patient following liver transplantation from a seropositive donor. J. Med. Virol. 28, 69–72 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. Strenger, V., Urban, C., Schwinger, W., Nacheva, E. P. & Aberle, S. W. Transmission of chromosomally integrated Hhv-6 by bone marrow transplantation. Pediatr. Blood Cancer 56, 171 (2011).

    Article  PubMed  Google Scholar 

  82. Porter, C. K. et al. Postinfectious gastrointestinal disorders following norovirus outbreaks. Clin. Infect. Dis. 55, 915–922 (2012).

    Article  PubMed  Google Scholar 

  83. Sánchez-Fauquier, A. et al. Norovirus-associated encephalitis in a previously healthy 2-year-old girl. Pediatr. Infect. Dis. J. 34, 222–223 (2015).

  84. Shima, T. et al. A nationwide survey of norovirus-associated encephalitis/encephalopathy in Japan. Brain Dev. 41, 263–270 (2019).

  85. Lucignani, G. et al. From fetal to neonatal neuroimaging in torch infections: a pictorial review. Children 9, 11 (2022).

    Article  Google Scholar 

  86. Heininger, U. & Seward, J. F. Varicella. Lancet 368, 1365–1376 (2006).

    Article  PubMed  Google Scholar 

  87. Gershon, A., Marin, M. & Seward, J. in Infectious Diseases of the Fetus and Newborn Infant (Wilson, C., Nizet, V., Maldonado, Y., Remington, J. & Klein, J. eds.) 675 (Elsevier, 2016).

  88. Shang, Q. et al. Serological data analyses show that adenovirus 36 infection is associated with obesity: a meta-analysis involving 5739 subjects. Obesity 22, 895–900 (2014).

    Article  PubMed  Google Scholar 

  89. Odumade, O. A., Hogquist, K. A. & Balfour, H. H. Jr. Progress and problems in understanding and managing primary epstein-barr virus infections. Clin. Microbiol. Rev. 24, 193–209 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. van Seventer, J. M. & Hochberg, N. S. Principles of infectious diseases: transmission, diagnosis, prevention, and control. Int. Encycl. Public Health 22–39 (2017).

  91. Rottier E., Ince M. E. Controlling and preventing disease: The role of water and environmental interventions [Internet]. 2003 [cited 2023 Sep 18]; Available from: https://hdl.handle.net/2134/30817.

  92. Goderis, J. et al. Hearing loss and congenital Cmv infection: a systematic review. Pediatrics 134, 972–982 (2014).

    Article  PubMed  Google Scholar 

  93. Ronchi, A. et al. Evaluation of clinically asymptomatic high risk infants with congenital cytomegalovirus infection. J. Perinatol. 40 (2020).

  94. Forner, G., Abate, D., Mengoli, C., Palù, G. & Gussetti, N. High cytomegalovirus (Cmv) DNAemia predicts Cmv sequelae in asymptomatic congenitally infected newborns born to women with primary infection during pregnancy. J. Infect. Dis. 212, 67–71 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Rao, S. & Nyquist, A.-C. Respiratory viruses and their impact in healthcare. Curr. Opin. Infect. Dis. 27, 342–347 (2014).

    Article  PubMed  Google Scholar 

  96. Khalfaoui, S. et al. Lung infection by human bocavirus induces the release of profibrotic mediator cytokines in vivo and in vitro. PLoS ONE 11, e0147010 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Pender, M. P. The essential role of Epstein-Barr virus in the pathogenesis of multiple sclerosis. Neuroscientist 17, 351–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Soldan, S. S. & Lieberman, P. M. Epstein–Barr virus and multiple sclerosis. Nat. Rev. Microbiol. 21, 51–64 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Wipfler, P., Dunn, N., Beiki, O., Trinka, E. & Fogdell-Hahn, A. The viral hypothesis of mesial temporal lobe epilepsy - is human herpes virus-6 the missing link? a systematic review and meta-analysis. Seizure 54, 33–40 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Chou, I. C., Lin Cc Fau, -, Kao, C.-H. & Kao, C. H. Enterovirus encephalitis increases the risk of attention deficit hyperactivity disorder: a taiwanese population-based case-control study. Medicine 94, e707 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Collier, F. et al. Innate immune activation and circulating inflammatory markers in preschool children. Front. Immunol. 12 830049 (2021).

  102. Dobrow, M., Hagens, V., Chafe, R., Sullivan, T. & Rabeneck, L. Consolidated principles for screening based on a systematic review and consensus process. CMAJ 190, E422 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bhuyan, G. S. et al. Bacterial and viral pathogen spectra of acute respiratory infections in under-5 children in hospital settings in dhaka city. PLoS ONE 12, e0174488 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chonmaitree, T. et al. Nasopharyngeal microbiota in infants and changes during viral upper respiratory tract infection and acute otitis media. PLoS ONE 12, e0180630 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  105. El Kholy, A. A. et al. The use of multiplex PCR for the diagnosis of viral severe acute respiratory infection in children: a high rate of co-detection during the winter season. Eur. J. Clin. Microbiol. 35, 1607–1613 (2016).

    Article  CAS  Google Scholar 

  106. Fuller, J. A. et al. Association of the Ct values of real-time Pcr of viral upper respiratory tract infection with clinical severity, Kenya. J. Med. Virol. 85, 924–932 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Hellferscee, O. et al. Enterovirus genotypes among patients with severe acute respiratory illness, influenza-like illness, and asymptomatic individuals in South Africa, 2012-2014. J. Med. Virol. 89, 1759–1767 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kelly, M. S. et al. Association of respiratory viruses with outcomes of severe childhood pneumonia in Botswana. PLoS ONE 10, e0126593 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Kenmoe, S. et al. Viral etiology of severe acute respiratory infections in hospitalized children in Cameroon, 2011-2013. Influenza Other Respir. Viruses 10, 386–393 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lekana-Douki, S. E. et al. Viral etiology and seasonality of influenza-like illness in Gabon, March 2010 to June 2011. BMC Infect. Dis. 14, 373 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Madhi, S. A. et al. Bacterial and respiratory viral interactions in the etiology of acute otitis media in Hiv-infected and Hiv-uninfected South African children. Pediatr. Infect. Dis. J. 34, 753–760 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Pallon, J. et al. Presence of microorganisms in children with pharyngotonsillitis and healthy controls: a prospective study in primary healthcare. Infection 49, 715–724 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Pokorn, M. et al. Respiratory and enteric virus detection in children. J. Child Neurol. 32, 84–93 (2017).

    Article  PubMed  Google Scholar 

  114. Powell, E. et al. The temporal pattern and lifestyle associations of respiratory virus infection in a cohort study spanning the first two years of life. BMC Pediatr. 22, 166 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Schlaberg, R. et al. Viral pathogen detection by metagenomics and pan-viral group polymerase chain reaction in children with pneumonia lacking identifiable etiology. J. Infect. Dis. 215, 1407–1415 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Shui, J. E. et al. Impact of respiratory viruses in the neonatal intensive care unit. J. Perinatol. 38, 1556–1565 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Skevaki, C. L. et al. Associations between viral and bacterial potential pathogens in the nasopharynx of children with and without respiratory symptoms. Pediatr. Infect. Dis. J. 34, 1296–1301 (2015).

    Article  PubMed  Google Scholar 

  118. Srinivasan, A. et al. Prospective evaluation for respiratory pathogens in children with sickle cell disease and acute respiratory illness. Pediatr. Blood Cancer 61, 507–511 (2014).

    Article  PubMed  Google Scholar 

  119. Thornton, H. V. et al. Throat swabs in children with respiratory tract infection: associations with clinical presentation and potential targets for point-of-care testing. Fam. Pract. 34, 407–415 (2017).

    Article  PubMed  Google Scholar 

  120. Vickers, D. M. et al. Detection of respiratory pathogens does not predict risks after outpatient adenotonsillectomy. Laryngoscope 131, E2074–E2079 (2021).

    Article  CAS  PubMed  Google Scholar 

  121. Wildenbeest, J. G. et al. Prevalence of rhinoviruses in young children of an unselected birth cohort from the Netherlands. Clin. Microbiol. Infect. 22, 736.e739–736.e715 (2016).

    Article  Google Scholar 

  122. de Steenhuijsen Piters, W. A. A. et al. Early-life viral infections are associated with disadvantageous immune and microbiota profiles and recurrent respiratory infections. Nat. Microbiol. 7, 224–237 (2022).

    Article  PubMed  Google Scholar 

  123. Xiong, X. et al. A comparison between Chinese children infected with coronavirus disease-2019 and with severe acute respiratory syndrome 2003. J. Pediatr. 224, 30–36 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Chonmaitree, T. et al. Symptomatic and asymptomatic respiratory viral infections in the first year of life: association with acute otitis media development. Clin. Infect. Dis. 60, 1–9 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Rivera-Gutierrez, X. et al. The fecal and oropharyngeal eukaryotic viromes of healthy infants during the first year of life are personal. Sci. Rep. 13, 938 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  126. Ghietto, L. M. et al. Comorbidity and high viral load linked to clinical presentation of respiratory human bocavirus infection. Arch. Virol. 160, 117–127 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Martin, E. T., Kuypers, J., McRoberts, J. P., Englund, J. A. & Zerr, D. M. Human bocavirus 1 primary infection and shedding in infants. J. Infect. Dis. 212, 516–524 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schlaberg, R. et al. Human bocavirus capsid messenger rna detection in children with pneumonia. J. Infect. Dis. 216, 688–696 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Cabeca, T. K., Granato, C. & Bellei, N. Epidemiological and clinical features of human coronavirus infections among different subsets of patients. Influenza Other Respir Viruses 7, 1040–1047 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Baillie, V. L. et al. Epidemiology and seasonality of endemic human coronaviruses in South African and Zambian children: a case-control pneumonia study. Viruses 13, 1513 (2021).

  131. Heimdal, I. et al. Human coronavirus in hospitalized children with respiratory tract infections: a 9-year population-based study from Norway. J. Infect. Dis. 219, 1198–1206 (2019).

    Article  PubMed  Google Scholar 

  132. Elbadawi, L. I., Haupt, T., Reisdorf, E., Danz, T. & Davis, J. P. Use and interpretation of a rapid respiratory syncytial virus antigen detection test among infants hospitalized in a neonatal intensive care unit - Wisconsin, March 2015. MMWR Morbidity Mortal. Wkly. Rep. 64, 857 (2015).

    Article  Google Scholar 

  133. Pavlin, B. I. et al. Atypical clinical presentation of ebola virus disease in pregnancy: implications for clinical and public health management. Int J. Infect. Dis. 97, 167–173 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Min, N. et al. An Epidemiological Surveillance of Hand Foot and Mouth Disease in Paediatric Patients and in Community: A Singapore Retrospective Cohort Study, 2013-2018. PLoS Negl. Trop. Dis. 15, e0008885 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Sánchez Pujol, M. J., Docampo Simon, A., Sanguino, L., Blanes, M. & Betlloch, I. Herpes simplex virus infection in neonates born to asymptomatic mothers: a case series. Cureus 14, e32393 (2022).

    PubMed  PubMed Central  Google Scholar 

  136. Elósegui, J. J. H., Torices, M. S. S., Rísquez, A. C. F., Montes, J. F. E. & García, A. L. C. Neonatal oropharyngeal infection by Hpv in our area. Pediatrics 97, 112–118 (2022).

    Google Scholar 

  137. Pokorska-Spiewak, M. et al. Comparison of clinical severity and epidemiological spectrum between coronavirus disease 2019 and influenza in children. Sci. Rep. 11, 5760 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  138. Priest, P. C., Jennings, L. C., Duncan, A. R., Brunton, C. R. & Baker, M. G. [Effectiveness of border screening for detecting influenza in arriving airline travelers]. Am. J. Public Health 35, 155–162 (2014).

    Google Scholar 

  139. Bhuiyan, M. U. et al. Nasopharyngeal density of respiratory viruses in childhood pneumonia in a highly vaccinated setting: findings from a case-control study. BMJ Open Respir. Res. 7, e000593 (2020).

  140. Edouard, S. et al. The nasopharyngeal microbiota in patients with viral respiratory tract infections is enriched in bacterial pathogens. Eur. J. Clin. Microbiol. Infect. Dis. 37, 1725–1733 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Pawlus, B., Zukowska, J. & Nitsch-Osuch, A. Influenza a (H1n1) and respiratory syncytial virus (Rsv) coinfection in a newborn child: a case report. Adv. Exp. Med. Biol. (2020).

  142. Cohen, C. et al. Asymptomatic transmission and high community burden of seasonal influenza in an urban and a rural community in South Africa, 2017-18 (Phirst): a population cohort study. Lancet Glob. Health 9, e863–e874 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cohen, C. et al. Cohort profile: a prospective household cohort study of influenza, respiratory syncytial virus and other respiratory pathogens community burden and transmission dynamics in South Africa, 2016-2018. Influenza Other Respir. Viruses 15, 789–803 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Moe, N. et al. The burden of human metapneumovirus and respiratory syncytial virus infections in hospitalized Norwegian children. J. Infect. Dis. 216, 110–116 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Dabilla, N. et al. Norovirus in feces and nasopharyngeal swab of children with and without acute gastroenteritis symptoms: first report of Gi.5 in Brazil and Gi.3 in nasopharyngeal swab. J. Clin. Virol. 87, 60–66 (2017).

    Article  PubMed  Google Scholar 

  146. Skanke, L. H. et al. Parechovirus a in hospitalized children with respiratory tract infections: a 10-year-long study from Norway. J. Pediatr. Infect. Dis. Soc. 10, 722–729 (2021).

    Article  CAS  Google Scholar 

  147. Wolsk, H. M. et al. Picornavirus-induced airway mucosa immune profile in asymptomatic neonates. J. Infect. Dis. 213, 1262–1270 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Bigogo, G. M. et al. Epidemiology of respiratory syncytial virus infection in rural and urban Kenya. J. Infect. Dis. 208, S207–S216 (2013).

    Article  PubMed  Google Scholar 

  149. Silva, D. et al. First report of two consecutive respiratory syncytial virus outbreaks by the novel genotypes on-1 and Na-2 in a neonatal intensive care unit. J. Pediatr. 96, 233–239 (2020).

    Article  Google Scholar 

  150. Baillie, V. L. et al. Molecular subtyping of human rhinovirus in children from three sub-Saharan African countries. J. Clin. Microbiol. 57, e00723-19 (2019).

  151. Baillie, V. L. et al. Epidemiology of the rhinovirus (Rv) in African and Southeast Asian children: a case-control pneumonia etiology study. Viruses 13, 1249 (2021).

  152. Loeffelholz, M. J. et al. Duration of rhinovirus shedding in the upper respiratory tract in the first year of life. Pediatrics 134, 1144–1150 (2014).

  153. van der Schee, M. P. et al. Altered exhaled biomarker profiles in children during and after rhinovirus-induced wheeze. Eur. Respir. J. 45, 440–448 (2015).

    Article  PubMed  Google Scholar 

  154. Peltola, V., Waris, M., Kainulainen, L., Kero, J. & Ruuskanen, O. Virus shedding after human rhinovirus infection in children, adults and patients with hypogammaglobulinaemia. Clin. Microbiol. Infect. 19, E322–E327 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Principi, N. et al. Prospective evaluation of rhinovirus infection in healthy young children. J. Clin. Virol. 66, 83–89 (2015).

    Article  PubMed  Google Scholar 

  156. Sánchez García, L., Calvo, C., Casas, I., Pozo, F. & Pellicer, A. Viral respiratory infections in very low birthweight infants at neonatal intensive care unit: prospective observational study. BMJ Paediatr. Open 4, e000661 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Abu-Raddad, L. J. et al. Characterizing the Qatar advanced-phase Sars-Cov-2 epidemic. Sci. Rep. 11, 6233 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Agha, R., Kojaoghlanian, T. & Avner, J. R. Initial observations of Covid-19 in US children. Hosp. Pediatr. 10, 902–905 (2020).

    Article  PubMed  Google Scholar 

  159. Ayed, A. et al. Maternal and perinatal characteristics and outcomes of pregnancies complicated with Covid-19 in Kuwait. BMC Pregnancy Childbirth 20, 754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Prasad, A. et al. Excretion of Sars-Cov-2 in breast milk: a single-centre observational study. BMJ Paediatr. Open 5, e001087 (2021).

    Article  PubMed  Google Scholar 

  161. Bahar, B. et al. Kinetics of viral clearance and antibody production across age groups in children with severe acute respiratory syndrome coronavirus 2 infection. J. Pediatr. 227, 31–37.e31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bai, G. H. et al. Clinical features and characteristics of pediatric patients with Covid-19 infection: experiences in a tertiary Taiwan hospital. Medicine 101, E30157 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Berksoy, E. et al. Clinical and laboratory characteristics of children with Sars-Cov-2 infection. Pediatr. Pulmonol. 56, 3674–3681 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Bhosgi, R., Sarvi, J. B. & Patil, G. R. To evaluate the clinical profile of neonates born to covid positive mothers during pandemic at Gims Hospital, Kalaburagi. Eur. J. Mol. Clin. Med. 9, 2925–2930 (2022).

    Google Scholar 

  165. Bianco, G. et al. Evaluation of an antigen-based test for hospital point-of-care diagnosis of Sars-Cov-2 infection. J. Clin. Virol. 139, 104838 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Calitri, C. et al. Long-term clinical and serological follow-up of paediatric patients infected by Sars-Cov-2. Le. Infez. Med. 29, 216–223 (2021).

    CAS  Google Scholar 

  167. Cardona-Perez, J. A. et al. Prevalence, clinical features, and outcomes of Sars-Cov-2 infection in pregnant women with or without mild/moderate symptoms: results from universal screening in a tertiary care center in Mexico City, Mexico. PLoS ONE 16, e0249584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cavicchiolo, M. E. et al. Universal screening of high-risk neonates, parents, and staff at a neonatal intensive care unit during the Sars-Cov-2 pandemic. Eur. J. Pediatr. 179, 1949–1955 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Concheiro-Guisan, A. et al. Subtle olfactory dysfunction after Sars-Cov-2 virus infection in children. Int. J. Pediatr. Otorhinolaryngol. 140, 110539 (2021).

    Article  PubMed  Google Scholar 

  170. Marginean, C. O., Melit, L. E. & Sasaran, M. O. The discrepancies of Covid-19 clinical spectrum between infancy and adolescence - two case reports and a review of the literature. Front. Pediatr. 8, 577174 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Di Mascio, D. et al. Risk factors associated with adverse fetal outcomes in pregnancies affected by coronavirus disease 2019 (Covid-19): a secondary analysis of the wapm study on Covid-19. J. Perinat. Med. 48, 950–958 (2020).

    Article  PubMed  Google Scholar 

  172. Eskander, E. et al. Assessment of Sars-Cov-2 testing in children during a low prevalence period (Vigil Study 1). Infect. Dis. Now. 51, 552–555 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Eythorsson, E. et al. Clinical spectrum of coronavirus disease 2019 in Iceland: population based cohort study. BMJ 371, m4529 (2020).

    Article  PubMed  Google Scholar 

  174. Nakwa, F. L. et al. An outbreak of infection due to severe acute respiratory corona virus-2 in a neonatal unit from a low and middle income setting. Front. Pediatr. 10, 933982 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Freeman, M. C., Rapsinski, G. J., Zilla, M. L. & Wheeler, S. E. Immunocompromised seroprevalence and course of illness of Sars-Cov-2 in one pediatric quaternary care center. J. Pediatr. Infect. Dis. Soc. 10, 426–431 (2021).

    Article  CAS  Google Scholar 

  176. Gupta, P. et al. An observational study for appraisal of clinical outcome and risk of mother-to-child Sars-Cov-2 transmission in neonates provided the benefits of mothers’ own milk. Eur. J. Pediatr. 181, 513–527 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Guthrie, J. L. et al. Characteristics of Sars-Cov-2 testing for rapid diagnosis of Covid-19 during the initial stages of a global pandemic. PLoS ONE 16, e0253941 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Han, M. S. et al. Clinical characteristics and viral Rna detection in children with coronavirus disease 2019 in the Republic of Korea. JAMA Pediatr. 175, 73–80 (2021).

    Article  PubMed  Google Scholar 

  179. Hassoun, A. et al. Parental coronavirus disease 2019 testing of hospitalized children: rethinking infection control in a pandemic. J. Pediatr. Infect. Dis. Soc. 9, 564–565 (2020).

    Article  CAS  Google Scholar 

  180. Holm-Jacobsen, J. N., Vonasek, J. H., Hagstrom, S., Donneborg, M. L. & Sorensen, S. Prolonged rectal shedding of Sars-Cov-2 in a 22-day-old-neonate: a case report. BMC Pediatr. 21, 506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Jiang, H. et al. Clinical features, laboratory findings and persistence of virus in 10 children with coronavirus disease 2019 (Covid-19). Biomed. J. 44, 94–100 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Huerta Saenz, I. H., Elias Estrada, J. C., Del Castillo, K. C., Taya, R. M. & Coronado, J. C. Maternal and perinatal characteristics of pregnant women with Covid-19 in a national hospital in Lima, Peru. Rev. Peru. de. Ginecologia y. Obstetricia 66, 19–24 (2020).

    Google Scholar 

  183. Kam, K. Q. et al. Sars-Cov-2 viral Rna load dynamics in the nasopharynx of infected children. Epidemiol. Infect. 149, e18 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Kane, A. D. et al. Peri-operative Covid-19 infection in urgent elective surgery during a pandemic surge period: a retrospective observational cohort study. Anaesthesia 75, 1596–1604 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Karabay, M. & Toptan, H. Short-term outcomes in neonates and preterm infants with Sars-Cov-2 infection acquired postpartum. J. Pediatr. Infect. Dis. 16, 290–295 (2021).

    Article  Google Scholar 

  186. Khan, M., Khan, H., Khan, S. & Nawaz, M. Epidemiological and clinical characteristics of coronavirus disease (Covid-19) cases at a screening clinic during the early outbreak period: a single-centre study. J. Med. Microbiol. 69, 1114–1123 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. More, K. et al. Outcomes of neonates born to mothers with coronavirus disease 2019 (Covid-19) - National Neonatology Forum (Nnf) India Covid-19 registry. Indian Pediatr. 58, 525–531 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Kumar, A. et al. Characteristics & outcomes of cancer patients with Covid-19: a multicentre retrospective study from India. Indian J. Med. Res. 155, 546–553 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  189. Lagier, J. C. et al. Testing the repatriated for Sars-Cov2: should laboratory-based quarantine replace traditional quarantine? Travel Med. Infect. Dis. 34, 101624 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Zhou, L. et al. Clinical analysis of seven pediatric patients with coronavirus disease 2019 (Covid-19) in Jingzhou, Hubei, China: a retrospective study. Transl. Pediatr. 10, 616–624 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Li, J. et al. Comparative analysis of symptomatic and asymptomatic Sars-Cov-2 infection in children. Ann. Acad. Med. Singap. 49, 530–537 (2020).

    Article  PubMed  Google Scholar 

  192. Mahfouz, M. E., Elrewiny, M. & Abdel-Moneim, A. S. Clinical manifestations of Sars-Cov-2 infection in neonates and the probability of maternal transmission. J. Paediatr. Child Health 58, 1366–1371 (2022).

    Article  PubMed  Google Scholar 

  193. Mao, L. J. et al. A child with household transmitted Covid-19. BMC Infect. Dis. 20, 329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Rodriguez-Paredes, M. B. et al. Covid-19 community transmission and super spreaders in rural villages from Manabi province in the coastal region of Ecuador assessed by massive testing of community-dwelling population. Am. J. Tropical Med. Hyg. 106, 121–126 (2021).

    Article  Google Scholar 

  195. McCormick, D. W. et al. Sars-Cov-2 infection risk among vaccinated and unvaccinated household members during the alpha variant surge - Denver, Colorado, and San Diego, California, January-April 2021. Vaccine 40, 4845–4855 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Han, M. S. et al. Viral Rna load in mildly symptomatic and asymptomatic children with Covid-19, Seoul, South Korea. Emerg. Infect. Dis. 26, 2497–2499 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Noghabi, M. E., Baniasad, A., Heidari, E., Davoudian, N. & Malekzadeh, F. A 35-day old infant with Covid-19. Iran. J. Pediatr. 30, 1–4 (2020).

    Google Scholar 

  198. Mirahmadizadeh, A. et al. Covid-19 presented with gastrointestinal manifestations in an 11-days-old neonate: a case report and review of the literature. Arch. Pediatr. Infect. Dis. 8, 1–3 (2020).

    Article  Google Scholar 

  199. Mosayebi, Z. et al. Clinical findings, laboratory assessment, and outcomes of 44 infants born to mothers with confirmed or suspected covid-19: a multicenter cohort study. Iran. J. Pediatr. 31, e112780 (2021).

    Article  Google Scholar 

  200. Mveang Nzoghe, A. et al. Dynamic and features of Sars-Cov-2 infection in Gabon. Sci. Rep. 11, 9672 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  201. Nallasamy, K. et al. Clinical profile, hospital course and outcome of children with Covid-19. Indian J. Pediatr. 88, 979–984 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Nicoletti, A. et al. Screening of Covid-19 in children admitted to the hospital for acute problems: preliminary data. Acta Biomed. 91, 75–79 (2020).

    PubMed  PubMed Central  Google Scholar 

  203. Kalamdani, P., Kalathingal, T., Manerkar, S. & Mondkar, J. Clinical profile of Sars-Cov-2 infected neonates from a tertiary government hospital in Mumbai, India. Indian Pediatr. 57, 1143–1146 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Pimentel, V. M., Jackson, F. I., Ferrante, A. D. & Figueroa, R. Ethnic disparities in coronavirus disease 2019 after the implementation of universal screening in Hartford, Connecticut. AJP Rep. 11, e147–e153 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Kumar, P. et al. Vertical transmission and clinical outcome of the neonates born to Sars-Cov-2-positive mothers: a tertiary care hospital-based observational study. BMJ Paediatr. Open 5, e001193 (2021).

    Article  PubMed  Google Scholar 

  206. Sevilla-Montoya, R. et al. Evidence of possible Sars-Cov-2 vertical transmission according to world health organization criteria in asymptomatic pregnant women. Ultrasound Obstet. Gynecol. 58, 900–908 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Radulova, P. A., Dimitrova, V. I. & Slancheva, B. P. Covid-19 in neonates: a case series. Perinatology 22, 45–50 (2021).

    Google Scholar 

  208. Ramírez-Rosas, A. et al. Study of perinatal transmission of Sars-Cov-2 in a Mexican public hospital. Int J. Infect. Dis. 113, 225–232 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Remaeus, K. et al. Characteristics and short-term obstetric outcomes in a case series of 67 women test-positive for Sars-Cov-2 in Stockholm, Sweden. Acta Obstetricia et. Gynecologica Scandinavica 99, 1626–1631 (2020).

    Article  CAS  PubMed  Google Scholar 

  210. Randremanana, R. V. et al. The Covid-19 epidemic in madagascar: clinical description and laboratory results of the first wave, March-September 2020. Influenza Other Respir. Viruses 15, 457–468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Cohen, R. et al. Assessment of Sars-Cov-2 infection by reverse transcription-Pcr and serology in the Paris area: a cross-sectional study. BMJ Paediatr. Open 4, e000887 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Sachdeva, S. et al. Outcome of Covid-19-positive children with heart disease and grown-ups with congenital heart disease: a multicentric study from India. Ann. Pediatr. Cardiol. 14, 269–277 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Sanchez-Luna, M. et al. Neonates born to mothers with Covid-19: data from the Spanish Society of Neonatology registry. Pediatrics 147, e2020015065 (2021).

  214. Stokes, W., Venner, A. A., Buss, E., Tipples, G. & Berenger, B. M. Prospective population-level validation of the Abbott Id now severe acute respiratory syndrome coronavirus 2 device implemented in multiple settings for testing asymptomatic and symptomatic individuals. Clin. Microbiol. Infect. 29, 247–252 (2023).

    Article  PubMed  Google Scholar 

  215. Tanaka, M. L. et al. Sars-Cov-2 transmission dynamics in households with children, Los Angeles, California. Front. Pediatr. 9, 752993 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Temel, H. et al. Evaluation of the clinical features of 81 patients with Covid-19: an unpredictable disease in children. J. Pediatr. Infect. Dis. 16, 47–52 (2021).

    Article  Google Scholar 

  217. Blumberg, T. J. et al. Universal screening for Covid-19 in children undergoing orthopaedic surgery: a multicenter report. J. Pediatr. Orthop. 40, E990–E993 (2020).

    Article  PubMed  Google Scholar 

  218. Vigil-Vazquez, S. et al. Impact of gestational Covid-19 on neonatal outcomes: is vertical infection possible? Pediatr. Infect. Dis. J. 41, 466–472 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Cao, W., Mai, G., Liu, Z. & Ren, H. An infant with coronavirus disease 2019 in China: a case report. Medicine 99, e21359 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. White, A. et al. Neonates hospitalized with community-acquired Sars-Cov-2 in a colorado neonatal intensive care unit. Neonatology 117, 641–645 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Ma, Y. et al. Characteristics of asymptomatic patients with Sars-Cov-2 infection in Jinan, China. Microbes Infect. 22, 212–217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Slaats, M. A. L. J. et al. Case report of a neonate with high viral Sarscov-2 loads and long-term virus shedding. J. Infect. Public Health 13, 1878–1884 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms Poh Chua for her assistance designing the search strategy.

Funding

This student project did not receive any funding. Research at the Murdoch Children’s Research Institute is supported by the Victorian government’s Operational Infrastructure Support Programme. A/Prof Sung was supported by a Melbourne Children’s Clinician Scientist Fellowship 2021. A/Prof Sung and Dr Gillespie were funded by a National Health and Medical Research Council (NHMRC) Clinical Trails and Cohort Studies grant (2006491). The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Contributions

M.G., C.J., A.N.G., Q.S. and F.H. contributed to the acquisition and presentation of data. M.G., Q.S. and F.H. performed the literature search for aim 1 and contributed to the acquisition of data. C.J. performed the literature search for aim 2, and together with A.N.G., contributed to the presentation of this data. M.G., A.N.G. and Q.S. contributed to data presentation. A.N.G. and V.S. supervised the data collection and interpretation processes. V.S. conceptualised the study. M.G. drafted the initial draft of the manuscript and revised the manuscript following author input. All authors critically reviewed the manuscript for intellectual content and approved the final version of the manuscript prior to submission.

Corresponding author

Correspondence to Valerie Sung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent statement

Patient consent was not required for this publication as it involved a secondary analysis of pre-existing published literature.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goh, M., Joy, C., Gillespie, A.N. et al. Asymptomatic viruses detectable in saliva in the first year of life: a narrative review. Pediatr Res 95, 508–531 (2024). https://doi.org/10.1038/s41390-023-02952-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02952-0

This article is cited by

Search

Quick links