Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Effects of Nasal Respiratory Support on Laryngeal and Esophageal Reflexes in Preterm Lambs

Abstract

Background

Significant cardiorespiratory events can be triggered in preterm infants as part of laryngeal chemoreflexes (LCRs) and esophageal reflexes (ERs). We previously showed that nasal continuous positive airway pressure (nCPAP) blunted the cardiorespiratory inhibition induced with LCRs. Therefore, we aimed to compare the effects of nCPAP and high-flow nasal cannulas (HFNC) on the cardiorespiratory events induced during LCRs and ERs. The hypothesis is that nCPAP but not HFNC decreases the cardiorespiratory inhibition observed during LCRs and ERs.

Methods

Eleven preterm lambs were instrumented to record respiration, ECG, oxygenation, and states of alertness. LCRs and ERs were induced during non-rapid eye movement sleep in a random order under these conditions: nCPAP 6 cmH2O, HFNC 7 L/min, high-flow nasal cannulas 7 L/min at a tracheal pressure of 6 cmH2O, and no respiratory support.

Results

nCPAP 6 cmH2O decreased the cardiorespiratory inhibition induced with LCRs, but not with ERs in preterm lambs. This blunting effect was less marked with HFNC 7 L/min, even when the tracheal pressure was maintained at 6 cmH2O.

Conclusions

nCPAP might be a treatment for cardiorespiratory events related to LCRs in newborns, either in the context of laryngopharyngeal refluxes or swallowing immaturity. Our preclinical results merit to be confirmed through clinical studies.

Impact

  • Laryngeal chemoreflexes can be responsible for significant cardiorespiratory inhibition in newborns, especially preterm.

  • Nasal continuous positive airway pressure at 6 cmH2O significantly decreased this cardiorespiratory inhibition.

  • High-flow nasal cannulas at 7 L/min had a lesser effect than nasal continuous positive airway pressure.

  • Esophageal stimulation was responsible for a smaller cardiorespiratory inhibition, which was not significantly modified by nasal continuous positive airway pressure or high-flow nasal cannulas.

  • Nasal continuous positive airway pressure should be tested for its beneficial effect on cardiorespiratory events related to laryngeal chemoreflexes in preterm newborns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effect of nasal respiratory support on laryngeal chemoreflexes in one preterm lamb on postnatal day 7 during NREM sleep.
Fig. 2: Effect of nasal respiratory support on the cardiac inhibitory components of laryngeal chemoreflexes.
Fig. 3: Effect of nasal respiratory support on the respiratory inhibitory components of laryngeal chemoreflexes.
Fig. 4: Effect of nasal respiratory support on the respiratory inhibitory components of esophageal reflexes.
Fig. 5: Effect of nasal respiratory support on the cardiac inhibitory components of esophageal chemoreflexes.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study is included in this published article [and its supplementary information files].

References

  1. Hasenstab, K. A. & Jadcherla, S. R. Gastroesophageal reflux disease in the neonatal intensive care unit neonate: controversies, current understanding, and future directions. Clin. Perinatol. 47, 243–263 (2020).

    Article  PubMed  Google Scholar 

  2. Praud, J. P., Cornerstone, A. & Kemp, J. In Kendig’s Disorders of the Respiratory Tract (eds. Willmott, R. W. et al.) (Elsevier Saunders, 2023).

  3. St-Hilaire, M. et al. Postnatal maturation of laryngeal chemoreflexes in the preterm lamb. J. Appl. Physiol. (1985) 102, 1429–1438 (2007).

    Article  PubMed  Google Scholar 

  4. Thach, B. T. Reflux associated apnea in infants: evidence for a laryngeal chemoreflex. Am. J. Med. 103, 120S–124S (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Cresi, F. et al. Cardiorespiratory events in infants with gastroesophageal reflux symptoms: is there any association? Neurogastroenterol. Motil. 30, e13278 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Hasenstab, K. A., Nawaz, S., Lang, I. M., Shaker, R. & Jadcherla, S. R. Pharyngoesophageal and cardiorespiratory interactions: potential implications for premature infants at risk of clinically significant cardiorespiratory events. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G304–G312 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Nault, S., Samson, N., Nadeau, C., Djeddi, D. & Praud, J. P. Reflex cardiorespiratory events from esophageal origin are heightened by preterm birth. J. Appl. Physiol. (1985) 123, 489–497 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Jadcherla, S. R. et al. Spatiotemporal characteristics of acid refluxate and relationship to symptoms in premature and term infants with chronic lung disease. Am. J. Gastroenterol. 103, 720–728 (2008).

    Article  PubMed  Google Scholar 

  9. Thach, B. T. Maturation and transformation of reflexes that protect the laryngeal airway from liquid aspiration from fetal to adult life. Am. J. Med. 111, 69S–77S (2001).

    Article  PubMed  Google Scholar 

  10. Schey, W. L., Replogle, R., Campbell, C., Meus, P. & Levinsky, R. A. Esophageal dysmotility and the sudden infant death syndrome: clinical experience. Radiology 140, 67–71 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Kuypers, K. et al. Reflexes that impact spontaneous breathing of preterm infants at birth: a narrative review. Arch. Dis. Child. Fetal Neonatal Ed. 105, 675–679 (2020).

    Article  PubMed  Google Scholar 

  12. Uchiyama, A., Ochiai, S. & Murayama, Y. Noninvasive respiratory support following extubation in preterm infants. Pediatr. Int. 65, e15535 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Dani, C. Nasal continuous positive airway pressure and high-flow nasal cannula today. Clin. Perinatol. 48, 711–724 (2021).

    Article  PubMed  Google Scholar 

  14. Hong, H., Li, X. X., Li, J. & Zhang, Z. Q. High-flow nasal cannula versus nasal continuous positive airway pressure for respiratory support in preterm infants: a meta-analysis of randomized controlled trials. J. Matern. Fetal Neonatal Med. 34, 259–266 (2021).

    Article  PubMed  Google Scholar 

  15. Nasef, N. et al. High-flow nasal cannulae are associated with increased diaphragm activation compared with nasal continuous positive airway pressure in preterm infants. Acta Paediatr. 104, e337–e343 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Boudaa, N. et al. Effects of caffeine and/or nasal CPAP treatment on laryngeal chemoreflexes in preterm lambs. J. Appl. Physiol. (1985) 114, 637–646 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Djeddi, D., Cantin, D., Samson, N. & Praud, J. P. Nasal continuous positive airway pressure inhibits gastroesophageal reflux in newborn lambs. PLoS One 9, e107736 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Elsedawi, B. F. et al. Safety of bottle-feeding under nasal respiratory support in preterm lambs with and without tachypnoea. Front. Physiol. 12, 785086 (2022).

  19. Alain, C. et al. Nasal respiratory support and tachypnea and oral feeding in full-term newborn lambs. J. Appl. Physiol. (1985) 130, 1436–1447 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Samson, N., Dumont, S., Specq, M. L. & Praud, J. P. Radio telemetry devices to monitor breathing in non-sedated animals. Respir. Physiol. Neurobiol. 179, 111–118 (2011).

    Article  PubMed  Google Scholar 

  21. Specq, M. L. et al. Moderate hyperbilirubinemia alters neonatal cardiorespiratory control and induces inflammation in the nucleus tractus solitarius. Front. Physiol. 7, 437 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Renolleau, S., Letourneau, P., Niyonsenga, T., Praud, J. P. & Gagne, B. Thyroarytenoid muscle electrical activity during spontaneous apneas in preterm lambs. Am. J. Respir. Crit. Care Med. 159, 1396–1404 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Kato, I. et al. Incomplete arousal processes in infants who were victims of sudden death. Am. J. Respir. Crit. Care Med. 168, 1298–1303 (2003).

    Article  PubMed  Google Scholar 

  24. St-Hilaire, M. et al. Laryngeal chemoreflexes induced by acid, water, and saline in nonsedated newborn lambs during quiet sleep. J. Appl. Physiol. (1985) 98, 2197–2203 (2005).

    Article  PubMed  Google Scholar 

  25. Bourgoin-Heck, M. et al. Effects of moderate hyperbilirubinemia on nutritive swallowing and swallowing-breathing coordination in preterm lambs. Neonatology 108, 42–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Praud, J. P. Upper airway reflexes in response to gastric reflux. Paediatr. Respir. Rev. 11, 208–212 (2010).

    Article  PubMed  Google Scholar 

  27. Berridge, C. W., Schmeichel, B. E. & Espana, R. A. Noradrenergic modulation of wakefulness/arousal. Sleep. Med. Rev. 16, 187–197 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Filiano, J. J. & Kinney, H. C. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol. Neonate 65, 194–197 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Abu Jawdeh, E. G. & Martin, R. J. Neonatal apnea and gastroesophageal reflux (Ger): is there a problem? Early Hum. Dev. 89, S14–S16 (2013).

    Article  PubMed  Google Scholar 

  30. Di Fiore, J. M., Arko, M., Whitehouse, M., Kimball, A. & Martin, R. J. Apnea is not prolonged by acid gastroesophageal reflux in preterm infants. Pediatrics 116, 1059–1063 (2005).

    Article  PubMed  Google Scholar 

  31. Poets, C. F. Interventions for apnoea of prematurity: a personal view. Acta Paediatr. 99, 172–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Rossor, T., Andradi, G., Ali, K., Bhat, R. & Greenough, A. Gastro-oesophageal reflux and apnoea: is there a temporal relationship? Neonatology 113, 206–211 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Jadcherla, S. R. et al. Impact of feeding strategies with acid suppression on esophageal reflexes in human neonates with gastroesophageal reflux disease: a single-blinded randomized clinical trial. Clin. Transl. Gastroenterol. 11, e00249 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sankaran, J., Qureshi, A. H., Woodley, F., Splaingard, M. & Jadcherla, S. R. Effect of severity of esophageal acidification on sleep vs wake periods in infants presenting with brief resolved unexplained events. J. Pediatr. 179, 42–48.e41 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ramet, J. et al. Cardiac and respiratory responses to esophageal dilatation during rem sleep in human infants. Biol. Neonate 58, 181–187 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Ramet, J. Cardiac and respiratory reactivity to gastroesophageal reflux: experimental data in infants. Biol. Neonate 65, 240–246 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Kenigsberg, K., Griswold, P. G., Buckley, B. J., Gootman, N. & Gootman, P. M. Cardiac effects of esophageal stimulation: possible relationship between gastroesophageal reflux (Ger) and sudden infant death syndrome (Sids). J. Pediatr. Surg. 18, 542–545 (1983).

    Article  CAS  PubMed  Google Scholar 

  38. Jadcherla, S. R. et al. Effect of nasal noninvasive respiratory support methods on pharyngeal provocation-induced aerodigestive reflexes in infants. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G1006–G1014 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jadcherla, S. R., Hoffmann, R. G. & Shaker, R. Effect of maturation of the magnitude of mechanosensitive and chemosensitive reflexes in the premature human esophagus. J. Pediatr. 149, 77–82 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kinkead, R. & Schlenker, E. Sex-based differences in respiratory control: progress in basic physiology and clinical research. Respir. Physiol. Neurobiol. 245, 1–3 (2017).

    Article  PubMed  Google Scholar 

  41. Kouchi, H., Uppari, N., Joseph, V., & Bairam, A. Sex-specific respiratory effects of acute and chronic caffeine administration in newborn rats. Respir. Physiol. Neurobiol. 240, 8–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Rousseau, J. P. et al. On the origins of sex-based differences in respiratory disorders: lessons and hypotheses from stress neuroendocrinology in developing rats. Respir. Physiol. Neurobiol. 245, 105–121 (2017).

    Article  PubMed  Google Scholar 

  43. Baldy, C., Chamberland, S., Fournier, S. & Kinkead, R. Sex-specific consequences of neonatal stress on cardio-respiratory inhibition following laryngeal stimulation in rat pups. eNeuro 4, ENEURO.0393-17.2017 (2017).

  44. Di Fiore, J. M., Poets, C. F., Gauda, E., Martin, R. J. & MacFarlane, P. Cardiorespiratory events in preterm infants: interventions and consequences. J. Perinatol. 36, 251–258 (2016).

    Article  PubMed  Google Scholar 

  45. Erickson, G., Dobson, N. R. & Hunt, C. E. Immature control of breathing and apnea of prematurity: the known and unknown. J. Perinatol. 41, 2111–2123 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Thach, B. T. The role of respiratory control disorders in sids. Respir. Physiol. Neurobiol. 149, 343–353 (2005).

    Article  PubMed  Google Scholar 

  47. Hunt, C. E. Ontogeny of autonomic regulation in late preterm infants born at 34–37 weeks postmenstrual age. Semin. Perinatol. 30, 73–76 (2006).

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Canada Research Chair in Neonatal Respiratory Physiology and an operating grant (CIHR #15558) from the Canadian Institutes of Health Research allocated to J.P.P. E.F.P. and J.P.P. are members of the Sherbrooke University Hospital Research Center, the Quebec Respiratory Health Research Network, and the Quebec Research Network on Perinatal Determinants of Children Health.

Author information

Authors and Affiliations

Authors

Contributions

N.S., C.N., E.F.P., and J.P.P. conceived the research and designed the protocol. N.S. and C.N. performed the deliveries. B.F.E., N.S., C.N., A.C., and A.L. ensured the care of the preterm lambs. B.F.E., N.S., and C.N. performed animal experiments. B.F.E., N.S., C.N., and A.C. analyzed the data. B.F.E., N.S., E.F.P., and J.P.P. interpreted the results. B.F.E. prepared the figures and wrote the first draft of the manuscript. N.S. and J.P.P. revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Jean-Paul Praud.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsedawi, B.F., Samson, N., Nadeau, C. et al. Effects of Nasal Respiratory Support on Laryngeal and Esophageal Reflexes in Preterm Lambs. Pediatr Res (2023). https://doi.org/10.1038/s41390-023-02883-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-023-02883-w

This article is cited by

Search

Quick links