Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Functional characterization of two novel NKX2-1 frameshift variants that cause pulmonary surfactant dysfunction

Abstract

Background

We aim to report two unrelated patients with pulmonary surfactant dysfunction (PSD) that carried two novel NKX2-1 frameshift variants, and evaluated the impact of these variants in vitro.

Methods

We enrolled children with PSD and NKX2-1 variants, and collected their clinical information and follow-up data. We constructed wild-type (WT) and variant NKX2-1 plasmids and transfected them into A549 and HEK293T cells. The functional characterization of variants was then evaluated by qRT-PCR, western blot, immunofluorescence, electrophoretic mobility shift assay, and dual-luciferase reporter assay.

Results

Two novel heterozygous frameshift variants of NKX2-1, i.e., c.705delC (Gly236Alafs*29) and c.313_316 dup (Asn106Lysfs*304), were identified in children from two unrelated families. We discerned attenuated mRNA and protein expression in the Asn106Lysfs*304 variant, and reduced DNA -binding as well as transcriptional activation capabilities in both variants. While the Asn106Lysfs*304 variant lost its synergistic interactions with PAX8 and TAZ, the Gly236Alafs*29 variant partially retained its residual transcriptional activation capabilities and synergistic interactions with PAX8 and TAZ.

Conclusions

We reported on two children with two novel NKX2-1 frameshift variants. In vitro experiments revealed that the two frameshift variants have common and different mechanisms based on the loss or conservation of domains, which partially explained the phenotypical heterogeneity.

Impact

  • Pulmonary surfactant dysfunction is a rare heterogeneous disease that exhibits a great burden on children’s quality of life.

  • We reported two novel NKX2-1 frameshift variants carried by two children with different clinical phenotypes, thus broadening our knowledge base of gene variations and phenotypes in NKX2-1.

  • We performed an in vitro study and uncovered different pathogenic mechanisms underlying the actions of two novel variants, and thereby partially explained the mechanisms of phenotypical heterogeneity caused by NKX2-1 variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical information of patients and NKX2-1 variants genetic analysis.
Fig. 2: mRNA and protein expression levels, nuclear translocation, and DNA-binding abilities of NKX2-1 variants.
Fig. 3: The transcriptional transactivation and synergistic interaction between the variants and TAZ or PAX8.

Similar content being viewed by others

References

  1. Bush, A. et al. European protocols for the diagnosis and initial treatment of interstitial lung disease in children. Thorax 70, 1078–1084 (2015).

    Article  PubMed  Google Scholar 

  2. Kurland, G. et al. An official American thoracic society clinical practice guideline: Classification, evaluation, and management of childhood interstitial lung disease in infancy. Am. J. Respir. Crit. Care Med. 188, 376–394 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yonker, L. M. & Kinane, T. B. Pediatric interstitial lung disease: thyroid transcription Factor-1 mutations and their phenotype potpourri. Chest 144, 728–730 (2013).

    Article  PubMed  Google Scholar 

  4. Nogee, L. M., de Mello, D. E., Dehner, L. P. & Colten, H. R. Brief report: deficiency of pulmonary surfactant protein B in congenital alveolar proteinosis. N. Engl. J. Med. 328, 406–410 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Trueba, S. S. et al. Pax8, Titf1, and Foxe1 gene expression patterns during human development: new insights into human thyroid development and thyroid dysgenesis-associated malformations. J. Clin. Endocrinol. Metab. 90, 455–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Guazzi, S. et al. Thyroid Nuclear Factor 1 (Ttf-1) Contains a Homeodomain and Displays a Novel DNA Binding Specificity. Embo J. 9, 3631–3639 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kolla, V. et al. Thyroid Transcription Factor in Differentiating Type Ii Cells: Regulation, Isoforms, and Target Genes. Am. J. Respir. Cell Mol. Biol. 36, 213–225 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Toonen, R. F., Gowan, S. & Bingle, C. D. The Lung Enriched Transcription Factor Ttf-1 and the Ubiquitously Expressed Proteins Sp1 and Sp3 Interact with Elements Located in the Minimal Promoter of the Rat Clara Cell Secretory Protein Gene. Biochem J. 316, 467–473 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guha, A. et al. Neuroepithelial Body Microenvironment Is a Niche for a Distinct Subset of Clara-Like Precursors in the Developing Airways. Proc. Natl. Acad. Sci. USA 109, 12592–12597 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Silberschmidt, D. et al. In vivo role of different domains and of phosphorylation in the transcription Factor Nkx2-1. BMC Dev. Biol. 11, 9 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park, K. S. et al. Taz Interacts with Ttf-1 and Regulates Expression of Surfactant Protein-C. J. Biol. Chem. 279, 17384–17390 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Martis, P. C. et al. C/Ebpalpha is required for lung maturation at birth. Development 133, 1155–1164 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Maeda, Y. et al. Parp-2 Interacts with Ttf-1 and regulates expression of surfactant Protein-B. J. Biol. Chem. 281, 9600–9606 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Lin, S., Perl, A. K. & Shannon, J. M. Erm/Thyroid Transcription Factor 1 Interactions Modulate Surfactant Protein C Transcription. J. Biol. Chem. 281, 16716–16726 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Guillot, L. et al. Nkx2-1 mutations leading to surfactant protein promoter dysregulation cause interstitial lung disease in “Brain-Lung-Thyroid Syndrome. Hum. Mutat. 31, E1146–E1162 (2010).

    Article  PubMed  Google Scholar 

  16. Carré, A. et al. Five New Ttf1/Nkx2.1 mutations in brain-lung-thyroid syndrome: Rescue by Pax8 Synergism in One Case. Hum. Mol. Genet 18, 2266–2276 (2009).

    Article  PubMed  Google Scholar 

  17. Nettore, I. C. et al. Identification and functional characterization of a novel mutation in the Nkx2-1 Gene: comparison with the data in the literature. Thyroid 23, 675–682 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Hamvas, A. et al. Heterogeneous pulmonary phenotypes associated with mutations in the thyroid transcription factor Gene Nkx2-1. Chest 144, 794–804 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moya, C. M. et al. Taz/Wwtr1 Mediates the Pulmonary Effects of Nkx2-1 Mutations in Brain-Lung-Thyroid Syndrome. J. Clin. Endocrinol. Metab. 103, 839–852 (2018).

    Article  PubMed  Google Scholar 

  20. Hong, D. et al. A Novel Surfactant Protein C mutation resulting in aberrant protein processing and altered subcellular localization causes infantile interstitial lung disease. Pediatr. Res 81, 891–897 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with Chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Ghaffari, M., Zeng, X., Whitsett, J. A. & Yan, C. Nuclear localization domain of thyroid transcription Factor-1 in respiratory epithelial cells. Biochem J. 328, 757–761 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gras, D. et al. Benign Hereditary Chorea: Phenotype, Prognosis, Therapeutic Outcome and Long Term Follow-up in a Large Series with New Mutations in the Titf1/Nkx2-1 Gene. J. Neurol. Neurosurg. Psychiatry 83, 956–962 (2012).

    Article  PubMed  Google Scholar 

  24. Thorwarth, A. et al. Comprehensive genotyping and clinical characterisation reveal 27 Novel Nkx2-1 mutations and expand the phenotypic spectrum. J. Med Genet. 51, 375–387 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Glik, A., Vuillaume, I., Devos, D. & Inzelberg, R. Psychosis, short stature in Benign hereditary chorea: A Novel thyroid transcription Factor-1 Mutation. Mov. disord. 23, 1744–1747 (2008).

    Article  PubMed  Google Scholar 

  26. Wright, J. R. Immunomodulatory Functions of Surfactant. Physiol. Rev. 77, 931–962 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Li, G. et al. Surfactant Protein-a–Deficient mice display an exaggerated early inflammatory response to a beta-resistant strain of influenza a virus. Am. J. Respir. Cell Mol. Biol. 26, 277–282 (2002).

    Article  PubMed  Google Scholar 

  28. LeVine, A. M. et al. Surfactant Protein-a-Deficient Mice Are Susceptible to Pseudomonas Aeruginosa Infection. Am. J. Respir. Cell Mol. Biol. 19, 700–708 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. LeVine, A. M. et al. Surfactant Protein a-Deficient Mice Are Susceptible to Group B Streptococcal Infection. J. Immunol. 158, 4336–4340 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Shinohara, H. et al. A novel mutation in Nkx2-1 shows dominant-negative effects only in the presence of Pax8. Thyroid 28, 1071–1073 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Di Palma, T. et al. Taz Is a Coactivator for Pax8 and Ttf-1, Two Transcription Factors Involved in Thyroid Differentiation. Exp. Cell Res. 315, 162–175 (2009).

    Article  PubMed  Google Scholar 

  32. Di Palma, T. et al. The paired domain-containing factor Pax8 and the Homeodomain-containing factor Ttf-1 directly interact and synergistically activate transcription. J. Biol. Chem. 278, 3395–3402 (2003).

    Article  PubMed  Google Scholar 

  33. Nattes, E. et al. Heterogeneity of lung disease associated with Nk2 homeobox 1 mutations. Respir. Med. 129, 16–23 (2017).

    Article  PubMed  Google Scholar 

  34. Wambach, J. A. et al. Genotype-phenotype correlations for infants and children with Abca3 deficiency. Am. J. Respir. Crit. Care Med. 189, 1538–1543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hong, D. et al. Clinical and Genetic Spectrum of Interstitial Lung Disease in Chinese Children Associated with Surfactant Protein C Mutations. Ital. J. Pediatr. 45, 117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Safi, K. H. et al. Interstitial lung disease of infancy caused by a new Nkx2-1 mutation. Clin. Case Rep. 5, 739–743 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Konishi, T. et al. Benign hereditary chorea: dopaminergic brain imaging in patients with a Novel Intronic Nkx2.1 Gene Mutation. J. Neurol. 260, 207–213 (2013).

    Article  PubMed  Google Scholar 

  38. Riordan, J. D. & Nadeau, J. H. From peas to disease: modifier genes, network resilience, and the genetics of health. Am. J. Hum. Genet. 101, 177–191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morris, C., Cluet, D. & Ricci, E. P. Ribosome dynamics and mRNA turnover, a complex relationship under constant cellular scrutiny. Wiley Interdiscip. Rev. RNA 12, e1658 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Muñoz, O., Lore, M. & Jagannathan, S. The Long and Short of Ejc-Independent Nonsense-Mediated Rna Decay. Biochem Soc. Trans. 51, 1121–1129 (2023).

    Article  PubMed  Google Scholar 

  41. Müller, M. B. D., Kasturi, P., Jayaraj, G. G. & Hartl, F. U. Mechanisms of readthrough mitigation reveal principles of Gcn1-mediated translational quality control. Cell 186, 3227–3244.e3220 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. De Felice, M., Damante, G., Zannini, M., Francis-Lang, H., & Di Lauro, R. Redundant Domains contribute to the transcriptional activity of the thyroid transcription Factor 1. J. Biol. Chem. 270, 26649–26656 (1995).

    Article  PubMed  Google Scholar 

  43. Delestrain, C. et al. Deciphering an isolated lung phenotype of Nkx2-1 Frameshift pathogenic variant. Front Pediatr. 10, 978598 (2022).

    Article  PubMed  Google Scholar 

  44. Flamein, F. et al. Molecular and cellular characteristics of Abca3 mutations associated with diffuse parenchymal lung diseases in children. Hum. Mol. Genet. 21, 765–775 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the patients and their families involved in this study.

Funding

This study was supported by grants from the National Natural Science Foundation of China (No. 82171707) and the Key Projects of the Natural Science Foundation from Fujian Provincial Department of Science and Technology (No. 2022D012).

Author information

Authors and Affiliations

Authors

Contributions

(I) Substantial contributions to conception and design: H.W., L.Q.; (II) Acquisition of data, or analysis and interpretation of data: H.W., G.J., D.D., D.H., W.Z., L.Q.; (III) Drafting the article or revising it critically for important intellectual content: H.W., L.Q.; (IV) Final approval of the version to be published: All authors.

Corresponding author

Correspondence to Liling Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the ethics committees of Children’s Hospital of Fudan University. Written informed consent was obtained from the patient’s guardian.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Jiang, G., Dai, D. et al. Functional characterization of two novel NKX2-1 frameshift variants that cause pulmonary surfactant dysfunction. Pediatr Res 95, 744–751 (2024). https://doi.org/10.1038/s41390-023-02882-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02882-x

Search

Quick links