Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of maternal bariatric surgery on long-term health of offspring: a scoping review

Abstract

While pregnancy post-bariatric surgery has become increasingly common, little is known about whether and how maternal bariatric surgery affects the next generation. This scoping review aimed to collate available evidence about the long-term health of offspring following maternal bariatric surgery. A literature search was conducted using three databases (PubMed, PsycINFO, EMBASE) to obtain relevant human and animal studies. A total of 26 studies were included: 17 were ancillary reports from five “primary” studies (three human, two animal studies) and the remaining nine were “independent” studies (eight human, one animal studies). The human studies adopted sibling-comparison, case-control, and single-group descriptive designs. Despite limited data and inconsistent results across studies, findings suggested that maternal bariatric surgery appeared to (1) modify epigenetics (especially genes involved in immune, glucose, and obesity regulation); (2) alter weight status (unclear direction of alteration); (3) impair cardiometabolic, immune, inflammatory, and appetite regulation markers (primarily based on animal studies); and (4) not affect the neurodevelopment in offspring. In conclusion, this review supports that maternal bariatric surgery has an effect on the health of offspring. However, the scarcity of studies and heterogenous findings highlight that more research is required to determine the scope and degree of such effects.

Impact

  • There is evidence that bariatric surgery modifies epigenetics in offspring, especially genes involved in immune, glucose, and obesity regulation.

  • Bariatric surgery appears to alter weight status in offspring, although the direction of alteration is unclear.

  • There is preliminary evidence that bariatric surgery impairs offspring’s cardiometabolic, immune, inflammatory, and appetite regulation markers. Therefore, extra care may be needed to ensure optimal growth in children born to mothers with previous bariatric surgery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: This figure illustrates the process for selecting studies to be included in the review paper.

Similar content being viewed by others

References

  1. Stierman, B. et al. National Health and Nutrition Examination Survey 2017–March 2020 Prepandemic Data Files Development of Files and Prevalence Estimates for Selected Health Outcomes. National Health Statistics Reports. no. 158 (2021).

  2. Sanchez, C. E. et al. Maternal pre-pregnancy obesity and child neurodevelopmental outcomes: a meta-analysis. Obes. Rev. 19, 464–484 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Lutsiv, O., Mah, J., Beyene, J. & McDonald, S. D. The effects of morbid obesity on maternal and neonatal health outcomes: a systematic review and meta-analyses. Obes. Rev. 16, 531–546 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Wu, H., Liu, F., Zhao, M., Liang, Y. & Xi, B. Maternal body mass index and risks of neonatal mortality and offspring overweight and obesity: findings from 0.5 million samples in 61 low- and middle-income countries. Pediatr. Obes. 15, e12665 (2020).

    Article  PubMed  Google Scholar 

  5. Kong, L., Nilsson, I. A. K., Brismar, K., Gissler, M. & Lavebratt, C. Associations of different types of maternal diabetes and body mass index with offspring psychiatric disorders. JAMA Netw. Open 3, e1920787 (2020).

    Article  PubMed  Google Scholar 

  6. Miras, A. D. & le Roux, C. W. Mechanisms underlying weight loss after bariatric surgery. Nat. Rev. Gastroenterol. Hepatol. 10, 575–584 (2013).

    Article  PubMed  Google Scholar 

  7. Welbourn, R. et al. Bariatric surgery worldwide: baseline demographic description and one-year outcomes from the Fourth IFSO Global Registry Report 2018. Obes. Surg. 29, 782–795 (2019).

    Article  PubMed  Google Scholar 

  8. American Society for Metabolic & Bariatric Surgery. Estimate of bariatric surgery numbers, 2011–2020, accessed 12/5/2022. https://asmbs.org/resources/estimate-of-bariatric-surgery-numbers.

  9. Youssefzadeh, A. C. et al. Pregnancy characteristics and outcomes after bariatric surgery: national-level analysis in the United States. Surg. Obes. Relat. Dis. 19, 364–373 (2023).

    Article  PubMed  Google Scholar 

  10. Khosravi-Largani, M. et al. Evaluation of all types of metabolic bariatric surgery and its consequences: a systematic review and meta-analysis. Obes. Surg. 29, 651–690 (2019).

    Article  PubMed  Google Scholar 

  11. Liu, D. F. et al. The effects of bariatric surgery on dyslipidemia and insulin resistance in overweight patients with or without type 2 diabetes: a systematic review and network meta-analysis. Surg. Obes. Relat. Dis. 17, 1655–1672 (2021).

    Article  PubMed  Google Scholar 

  12. Feichtinger, M. et al. Intrauterine fetal growth delay during late pregnancy after maternal gastric bypass surgery. Ultraschall Med. 41, 52–59 (2020).

    Article  PubMed  Google Scholar 

  13. Youssefzadeh, A. C. et al. Cesarean delivery after bariatric surgery: trends and outcomes in the United States. AJOG 226, S341 (2022).

    Article  Google Scholar 

  14. Różańska-Walędziak, A. et al. The influence of bariatric surgery on pregnancy and perinatal outcomes-A case-control study. J. Clin. Med. 9, 1324 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Akhter, Z. et al. Pregnancy after bariatric surgery and adverse perinatal outcomes: a systematic review and meta-analysis. PLoS Med. 16, e1002866 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Johansson, K. et al. Outcomes of pregnancy after bariatric surgery. NEJM 372, 814–824 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Gascoin, G. et al. Risk of low birth weight and micronutrient deficiencies in neonates from mothers after gastric bypass: a case control study. Surg. Obes. Relat. Dis. 13, 1384–1391 (2017).

    Article  PubMed  Google Scholar 

  18. Adsit, J. & Hewlings, S. J. Impact of bariatric surgery on breastfeeding: a systematic review. Surg. Obes. Relat. Dis. 18, 117–122 (2022).

    Article  PubMed  Google Scholar 

  19. Arksey, H. & O’Malley, L. Scoping studies: towards a methodological framework. Int J. Soc. Res Methodol. 8, 19–32 (2005).

    Article  Google Scholar 

  20. Munn, Z. et al. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 18, 143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Spann, R. A., Taylor, E. B., Welch, B. A. & Grayson, B. E. Altered immune system in offspring of rat maternal vertical sleeve gastrectomy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 317, R852–r863 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deer, E. M. et al. Dysregulated appetitive leptin signaling in male rodent offspring from post-bariatric dams. Curr. Res Physiol. 3, 50–58 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Spann, R. A., Welch, B. A. & Grayson, B. E. Ghrelin signalling is dysregulated in male but not female offspring in a rat model of maternal vertical sleeve gastrectomy. J. Neuroendocrinol. 33, e12913 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Grayson, B. E., Schneider, K. M., Woods, S. C. & Seeley, R. J. Improved rodent maternal metabolism but reduced intrauterine growth after vertical sleeve gastrectomy. Sci. Transl. Med. 5, 199ra112 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ceglarek, V. M. et al. Maternal Roux-en-Y gastric bypass surgery reduces lipid deposition and increases UCP1 expression in the brown adipose tissue of male offspring. Sci. Rep. 11, 1158 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pietrobon, C. B. et al. Maternal Roux-en-Y gastric bypass impairs insulin action and endocrine pancreatic function in male F1 offspring. Eur. J. Nutr. 59, 1067–1079 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Bertasso, I. M. et al. Pregnancy and lactation after Roux-en-Y gastric bypass worsen nonalcoholic fatty liver disease in obese rats and lead to differential programming of hepatic de novo lipogenesis in offspring. J. Dev. Orig. Health Dis. 13, 263–273 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Smith, J. et al. Effects of maternal surgical weight loss in mothers on intergenerational transmission of obesity. J. Clin. Endocrinol. Metab. 94, 4275–4283 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Kral, J. G. et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics 118, e1644–e1649 (2006).

    Article  PubMed  Google Scholar 

  30. Guénard, F. et al. Methylation and expression of immune and inflammatory genes in the offspring of bariatric bypass surgery patients. J. Obes. 2013, 492170 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guénard, F. et al. Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. PNAS 110, 11439–11444 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Van De Maele, K., Devlieger, R., De Schepper, J. & Gies, I. Endothelial function and its determinants in children born after maternal bariatric surgery. Pediatr. Res. 91, 699–704 (2022).

    Article  PubMed  Google Scholar 

  33. Van De Maele, K. et al. Adiposity, psychomotor and behaviour outcomes of children born after maternal bariatric surgery. Pediatr. Obes. 16, e12749 (2021).

    Article  PubMed  Google Scholar 

  34. Van De Maele, K., De Geyter, C., Vandenplas, Y., Gies, I. & Devlieger, R. Eating habits of children born after maternal bariatric surgery. Nutrients 12, 2577 (2020).

    Article  PubMed  Google Scholar 

  35. Berglind, D. et al. Differential methylation in inflammation and type 2 diabetes genes in siblings born before and after maternal bariatric surgery. Obesity (Silver Spring) 24, 250–261 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Willmer, M. et al. Surgically induced interpregnancy weight loss and prevalence of overweight and obesity in offspring. PLoS One 8, e82247 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berglind, D. et al. Differences in gestational weight gain between pregnancies before and after maternal bariatric surgery correlate with differences in birth weight but not with scores on the body mass index in early childhood. Pediatr. Obes. 9, 427–434 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Malik, S. et al. Maternal and fetal outcomes of Asian pregnancies after bariatric surgery. Surg. Obes. Relat. Dis. 16, 529–535 (2020).

    Article  PubMed  Google Scholar 

  39. Barisione, M., Carlini, F., Gradaschi, R., Camerini, G. & Adami, G. F. Body weight at developmental age in siblings born to mothers before and after surgically induced weight loss. Surg. Obes. Relat. Dis. 8, 387–391 (2012).

    Article  PubMed  Google Scholar 

  40. Dell’Agnolo, C. M., Cyr, C., de Montigny, F., de Barros Carvalho, M. D. & Pelloso, S. M. Pregnancy after bariatric surgery: obstetric and perinatal outcomes and the growth and development of children. Obes. Surg. 25, 2030–2039 (2015).

    Article  PubMed  Google Scholar 

  41. Larsson, L., Landin-Olsson, M. & Nilsson, C. Weight development in children after gastric bypass surgery. J. Fam. Reprod. Health 13, 176–180 (2019).

    Google Scholar 

  42. Del Sordo, G. et al. Postnatal health in children born to women after bariatric surgery. Obes. Surg. 30, 3898–3904 (2020).

    Article  PubMed  Google Scholar 

  43. Damti, P., Friger, M., Landau, D., Sergienko, R. & Sheiner, E. Offspring of women following bariatric surgery and those of patients with obesity are at an increased risk for long-term pediatric endocrine morbidity. Arch. Gynecol. Obstet. 300, 1253–1259 (2019).

    Article  PubMed  Google Scholar 

  44. Blume, C. A. et al. Association of maternal Roux-en-Y gastric bypass with obstetric outcomes and fluid intelligence in offspring. Obes. Surg. 28, 3611–3620 (2018).

    Article  PubMed  Google Scholar 

  45. Gimenes, J. C. et al. Nutritional status of children from women with previously bariatric surgery. Obes. Surg. 28, 990–995 (2018).

    Article  PubMed  Google Scholar 

  46. Kuhn, C., Covatti, C., Ribeiro, L. F. C., Balbo, S. L. & Torrejais, M. M. Bariatric surgery induces morphological changes in the extensor digitorum longus muscle in the offspring of obese rats. Tissue Cell 72, 101537 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Benton, M. C. et al. An analysis of DNA methylation in human adipose tissue reveals differential modification of obesity genes before and after gastric bypass and weight loss. Genome Biol. 16, 8 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fraszczyk, E. et al. The effects of bariatric surgery on clinical profile, DNA methylation, and ageing in severely obese patients. Clin. Epigenetics 12, 14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nilsson, E. K. et al. Roux-en Y gastric bypass surgery induces genome-wide promoter-specific changes in DNA methylation in whole blood of obese patients. PLoS One 10, e0115186 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Garcia, L. A. et al. Weight loss after Roux-En-Y gastric bypass surgery reveals skeletal muscle DNA methylation changes. Clin. Epigenetics 13, 100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pinhel, M. A. S. et al. Changes in DNA methylation and gene expression of insulin and obesity-related gene PIK3R1 after Roux-en-Y gastric bypass. Int J. Mol. Sci. 21, 4476 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilhelm, J. et al. Promoter methylation of LEP and LEPR before and after bariatric surgery: a cross-sectional study. Obes. Facts 14, 1–7 (2021).

    Article  PubMed  Google Scholar 

  53. Wei, Y. et al. Enriched environment-induced maternal weight loss reprograms metabolic gene expression in mouse offspring. J. Biol. Chem. 290, 4604–4619 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Nicholas, L. M. et al. Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring. FASEB J. 27, 3786–3796 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, S. et al. Periconceptional undernutrition in normal and overweight ewes leads to increased adrenal growth and epigenetic changes in adrenal IGF2/H19 gene in offspring. FASEB J. 24, 2772–2782 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. DiPietro, J. A. & Voegtline, K. M. The gestational foundation of sex differences in development and vulnerability. Neuroscience 342, 4–20 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Powell, T. L. et al. Sex-specific responses in placental fatty acid oxidation, esterification and transfer capacity to maternal obesity. Biochim Biophys. Acta Mol. Cell Biol. Lipids 1866, 158861 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Wijenayake, S. et al. Maternal high-fat diet induces sex-specific changes to glucocorticoid and inflammatory signaling in response to corticosterone and lipopolysaccharide challenge in adult rat offspring. J. Neuroinflamm. 17, 116 (2020).

    Article  CAS  Google Scholar 

  59. Pradeilles, R. et al. Factors associated with catch-up growth in early infancy in rural Pakistan: a longitudinal analysis of the women’s work and nutrition study. Matern Child Nutr. 15, e12733 (2019).

    Article  PubMed  Google Scholar 

  60. den Harink, T. et al. Preconception lifestyle intervention in women with obesity and echocardiographic indices of cardiovascular health in their children. Int J. Obes. (Lond.) 46, 1262–1270 (2022).

    Article  Google Scholar 

  61. Goedegebuure, W. J., Van der Steen, M., Smeets, C. C. J., Kerkhof, G. F. & Hokken-Koelega, A. C. S. SGA-born adults with postnatal catch-up have a persistently unfavourable metabolic health profile and increased adiposity at age 32 years. Eur. J. Endocrinol. 187, 15–26 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Martin, A., Connelly, A., Bland, R. M., Reilly, J. J. Health impact of catch-up growth in low-birth weight infants: systematic review, evidence appraisal, and meta-analysis. Matern Child Nutr. 13, https://doi.org/10.1111/mcn.12297 (2017).

  63. Lee, D. et al. Glycemic patterns are distinct in post-bariatric hypoglycemia after gastric bypass (PBH-RYGB). J. Clin. Endocrinol. Metab. 106, 2291–2303 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hanaire, H. et al. High glycemic variability assessed by continuous glucose monitoring after surgical treatment of obesity by gastric bypass. Diabetes Technol. Ther. 13, 625–630 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Capoccia, D. et al. Is type 2 diabetes really resolved after laparoscopic sleeve gastrectomy? Glucose variability studied by continuous glucose monitoring. J. Diabetes Res. 2015, 674268 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Borzì, A. M. et al. Endothelial function in obese patients treated with bariatric surgery. Diabetes Metab. Syndr. Obes. 13, 247–256 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cerreto, M., Santopaolo, F., Gasbarrini, A., Pompili, M. & Ponziani, F. R. Bariatric surgery and liver disease: general considerations and role of the gut-liver axis. Nutrients 13, 2649 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lutz, T. A. & Bueter, M. The use of rat and mouse models in bariatric surgery experiments. Front Nutr. 3, 25 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Spann, R. A. et al. Rodent vertical sleeve gastrectomy alters maternal immune health and fetoplacental development. Clin. Sci. (Lond.) 132, 295–312 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Himel, A. R., Cabral, S. A., Shaffery, J. P. & Grayson, B. E. Anxiety behavior and hypothalamic-pituitary-adrenal axis altered in a female rat model of vertical sleeve gastrectomy. PLoS One 13, e0200026 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding

V.L. was supported by the National Institute of Health, Building Interdisciplinary Research Careers in Women’s Health at UC Davis through Grant Number: 5K12HD051958.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y.: conception and design; literature search and review; interpretation of results; drafting the article; final approval. V.L.: interpretation of results; revising the article; final approval. S.W.G.: interpretation of results; revising the article; final approval

Corresponding author

Correspondence to Yang Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Lyo, V. & Groth, S.W. The impact of maternal bariatric surgery on long-term health of offspring: a scoping review. Pediatr Res 94, 1619–1630 (2023). https://doi.org/10.1038/s41390-023-02698-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02698-9

Search

Quick links