Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Effective early antiretroviral therapy in perinatal-HIV infection reduces subsequent plasma inflammatory profile

Abstract

Background

The long-term immunologic effects of antiretroviral therapy (ART) in children with perinatally-acquired HIV (PHIV) have not been fully elucidated. Here, we investigated how the timing of ART initiation affects the long-term immune profile of children living with PHIV by measuring immunomodulatory plasma cytokines, chemokines, and adenosine deaminases (ADAs).

Methods

40 PHIV participants initiated ART during infancy. 39 participant samples were available; 30 initiated ART ≤6 months (early-ART treatment); 9 initiated ART >6 months and <2 years (late-ART treatment). We compared plasma cytokine and chemokine concentrations and ADA enzymatic activities between early-ART and late-ART treatment 12.5 years later and measured correlation with clinical covariates.

Results

Plasma concentrations of 10 cytokines and chemokines (IFNγ, IL-12p70, IL-13, IL-17A, IL-IRA, IL-5, IL-6, and IL-9 as well as CCL7, CXCL10), ADA1, and ADA total were significantly higher in late-ART compared to early-ART treatment. Furthermore, ADA1 was significantly positively correlated with IFNγ, IL-17A, and IL-12p70. Meanwhile, total ADA was positively correlated with IFNγ, IL-13, IL-17A, IL-1RA, IL-6, and IL-12p70 as well as CCL7.

Conclusions

Elevation of several pro-inflammatory plasma analytes in late-ART despite 12.5 years of virologic suppression compared to early-ART treatment suggests that early treatment dampens the long-term plasma inflammatory profile in PHIV participants.

Impact

  • This study examines differences in the plasma cytokine, chemokine, and ADA profiles 12.5 years after treatment between early (≤6months) and late (>6 months and <2 years) antiretroviral therapy (ART) treatment initiation in a cohort of European and UK study participants living with PHIV.

  • Several cytokines and chemokines (e.g., IFNγ, IL-12p70, IL-6, and CXCL10) as well as ADA-1 are elevated in late-ART treatment in comparison to early-ART treatment.

  • Our results suggest that effective ART treatment initiated within 6 months of life in PHIV participants dampens a long-term inflammatory plasma profile as compared to late-ART treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Association of ART initiation on plasma cytokine and chemokine concentrations.
Fig. 2: Association of ART initiation and clinical variables on plasma ADA activity.
Fig. 3: Correlations of plasma ADA activity with plasma cytokine and chemokine concentrations between early- and late-treated children with PHIV.

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding authors on reasonable request.

References

  1. Koay, W. L. A. et al. Prevention of perinatal Hiv transmission in an area of high Hiv prevalence in the United States. J. Pediatr. 228, 101–109 (2021).

    Article  PubMed  Google Scholar 

  2. Chen, X. Q., Liu, C. & Kong, X. H. The role of Hiv replicative fitness in perinatal transmission of Hiv. Virol. Sin. 26, 147–155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dalzini, A. et al. Biological aging and immune senescence in children with perinatally acquired Hiv. J. Immunol. Res. 2020, 8041616 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moncunill, G. et al. Association of maternal factors and hiv infection with innate cytokine responses of delivering mothers and newborns in Mozambique. Front Microbiol 11, 1452 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Saharan, S., Lodha, R., Agarwal, R., Deorari, A. K. & Paul, V. K. Perinatal Hiv. Indian J. Pediatr. 75, 359–362 (2008).

    Article  PubMed  Google Scholar 

  6. Ewing, A. C. et al. Predictors of perinatal Hiv transmission among women without prior antiretroviral therapy in a resource-limited setting: The breastfeeding, antiretrovirals and nutrition study. Pediatr. Infect. Dis. J. 38, 508–512 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zicari, S. et al. Immune activation, inflammation, and non-aids co-morbidities in Hiv-infected patients under long-term art. Viruses 11, 200 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zevin, A. S., McKinnon, L., Burgener, A. & Klatt, N. R. Microbial translocation and microbiome dysbiosis in Hiv-associated immune activation. Curr. Opin. HIV AIDS 11, 182–190 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gootenberg, D. B., Paer, J. M., Luevano, J. M. & Kwon, D. S. Hiv-associated changes in the enteric microbial community: potential role in loss of homeostasis and development of systemic inflammation. Curr. Opin. Infect. Dis. 30, 31–43 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chiappini, E. et al. Accelerated aging in perinatally Hiv-infected children: clinical manifestations and pathogenetic mechanisms. Aging (Albany NY) 10, 3610–3625 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Klein, N. et al. Early antiretroviral therapy in children perinatally infected with Hiv: A unique opportunity to implement immunotherapeutic approaches to prolong viral remission. Lancet Infect. Dis. 15, 1108–1114 (2015).

    Article  PubMed  Google Scholar 

  12. Foster, C. et al. Early antiretroviral therapy reduces Hiv DNA following perinatal Hiv infection. AIDS 31, 1847–1851 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Pasvol, T. J., Foster, C. & Fidler, S. Novel therapies/hopes for Hiv cure in perinatally acquired hiv-positive adolescents. Curr. Opin. HIV AIDS 13, 281–287 (2018).

    Article  PubMed  Google Scholar 

  14. Mofenson, L. M. Centers for Disease, C. & Prevention, U. S. P. H. S. T. F.U.S. public health service task force recommendations for use of antiretroviral drugs in pregnant Hiv-1-Infected women for maternal health and interventions to reduce perinatal Hiv-1 transmission in the United States.MMWR Recomm. Rep.51,1–38 (2002).

    PubMed  Google Scholar 

  15. Tagarro, A. et al. Early and highly suppressive antiretroviral therapy are main factors associated with low viral reservoir in European perinatally Hiv-infected children. J. Acquir Immune Defic. Syndr. 79, 269–276 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Persaud, D. et al. Influence of age at virologic control on peripheral blood human immunodeficiency virus reservoir size and serostatus in perinatally infected adolescents. JAMA Pediatr. 168, 1138–1146 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oguntibeju, O. O. Quality of life of people living with Hiv and aids and antiretroviral therapy. HIV AIDS (Auckl.) 4, 117–124 (2012).

    PubMed  Google Scholar 

  18. Rainwater-Lovett, K., Uprety, P. & Persaud, D. Advances and hope for perinatal Hiv remission and cure in children and adolescents. Curr. Opin. Pediatr. 28, 86–92 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Foster, C. et al. The Carma study: Early infant antiretroviral therapy-timing impacts on total Hiv-1 DNA quantitation 12 years later. J. Pediatr. Infect. Dis. Soc. 10, 295–301 (2021).

    Article  CAS  Google Scholar 

  20. Ruggiero, A. et al. Determinants of B-cell compartment hyperactivation in European adolescents living with perinatally acquired Hiv-1 after over 10 years of suppressive therapy. Front Immunol. 13, 860418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luzuriaga, K. et al. Viremic relapse after Hiv-1 remission in a perinatally infected child. N. Engl. J. Med. 372, 786–788 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cotugno, N. et al. Early antiretroviral therapy-treated perinatally Hiv-infected seronegative children demonstrate distinct long-term persistence of Hiv-specific T-cell and B-cell memory. AIDS 34, 669–680 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Doria, M. et al. Early art initiation during infancy preserves natural killer cells in young european adolescents living with Hiv (Carma Cohort). J. Int. AIDS Soc. 24, e25717 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Smolen, K. K. et al. Ontogeny of plasma cytokine and chemokine concentrations across the first week of human life. Cytokine 148, 155704 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holdsworth, S. R. & Gan, P. Y. Cytokines: Names and numbers you should care about. Clin. J. Am. Soc. Nephrol. 10, 2243–2254 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kollmann, T. R., Kampmann, B., Mazmanian, S. K., Marchant, A. & Levy, O. Protecting the newborn and young infant from infectious diseases: lessons from immune ontogeny. Immunity 46, 350–363 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Odumade, O. A. et al. Plasma adenosine deaminase (Ada)-1 and -2 demonstrate robust ontogeny across the first four months of human life. Front Immunol. 12, 578700 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Borea, P. A., Gessi, S., Merighi, S., Vincenzi, F. & Varani, K. Pharmacology of adenosine receptors: The state of the art. Physiol. Rev. 98, 1591–1625 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Bouma, M. G. et al. Adenosine inhibits neutrophil degranulation in activated human whole blood: Involvement of adenosine A2 and A3 receptors. J. Immunol. 158, 5400–5408 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Kaljas, Y. et al. Human adenosine deaminases Ada1 and Ada2 bind to different subsets of immune cells. Cell Mol. Life Sci. 74, 555–570 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Meyts, I. & Aksentijevich, I. Deficiency of adenosine deaminase 2 (Dada2): Updates on the phenotype, genetics, pathogenesis, and treatment. J. Clin. Immunol. 38, 569–578 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zavialov, A. V. et al. Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J. Leukoc. Biol. 88, 279–290 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Clerici, M. & Shearer, G. M. A Th1->Th2 switch is a critical step in the etiology of Hiv infection. Immunol. Today 14, 107–111 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Reuter, M. A., Pombo, C. & Betts, M. R. Cytokine production and dysregulation in Hiv pathogenesis: lessons for development of therapeutics and vaccines. Cytokine Growth Factor Rev. 23, 181–191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lei, J., Yin, X., Shang, H. & Jiang, Y. Ip-10 is highly involved in Hiv infection. Cytokine 115, 97–103 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Yao, Y. et al. The effect of a year of highly active antiretroviral therapy on immune reconstruction and cytokines in Hiv/Aids patients. AIDS Res. Hum. Retroviruses 29, 691–697 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Passos, D. F., Bernardes, V. M., da Silva, J. L. G., Schetinger, M. R. C. & Leal, D. B. R. Adenosine signaling and adenosine deaminase regulation of immune responses: Impact on the immunopathogenesis of Hiv infection. Purinergic Signal 14, 309–320 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee, A. H. et al. Dynamic molecular changes during the first week of human life follow a robust developmental trajectory. Nat. Commun. 10, 1092 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Levy, O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat. Rev. Immunol. 7, 379–390 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Dowling, D. J. & Levy, O. Ontogeny of early life immunity. Trends Immunol. 35, 299–310 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katusiime, M. G., Van Zyl, G. U., Cotton, M. F. & Kearney, M. F. Hiv-1 persistence in children during suppressive art. Viruses 13, 1134 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mackiewicz, M. M., Overk, C., Achim, C. L. & Masliah, E. Pathogenesis of age-related hiv neurodegeneration. J. Neurovirol 25, 622–633 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Polosukhina, D. et al. Ccl11 exacerbates colitis and inflammation-associated colon tumorigenesis. Oncogene 40, 6540–6546 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Makhubele, T. G. et al. Systemic immune activation profiles of Hiv-1 subtype C-infected children and their mothers. Med. Inflamm. 2016, 9026573 (2016).

    Article  Google Scholar 

  45. Osuji, F. N., Onyenekwe, C. C., Ahaneku, J. E. & Ukibe, N. R. The effects of highly active antiretroviral therapy on the serum levels of pro-inflammatory and anti-inflammatory cytokines in Hiv infected subjects. J. Biomed. Sci. 25, 88 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Calza, L. et al. Significant decrease in plasma levels of D-Dimer, Interleukin-8, and Interleukin-12 after a 12-month treatment with rosuvastatin in Hiv-infected patients under antiretroviral therapy. AIDS Res Hum. Retroviruses 33, 126–132 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Pettengill, M. et al. Soluble Ecto-5’-Nucleotidase (5’-Nt), alkaline phosphatase, and adenosine deaminase (Ada1) activities in neonatal blood favor elevated extracellular adenosine. J. Biol. Chem. 288, 27315–27326 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rinaldi, S. et al. T cell immune discriminants of Hiv reservoir size in a pediatric cohort of perinatally infected individuals. PLoS Pathog. 17, e1009533 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Scully, E. P. Sex differences in Hiv infection. Curr. HIV/AIDS Rep. 15, 136–146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Addo, M. M. & Altfeld, M. Sex-based differences in Hiv type 1 pathogenesis. J. Infect. Dis. 209, S86–S92 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Falcinelli, S. D. et al. Impact of biological sex on immune activation and frequency of the latent Hiv reservoir during suppressive antiretroviral therapy. J. Infect. Dis. 222, 1843–1852 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moore, A. L. et al. Virologic, immunologic, and clinical response to highly active antiretroviral therapy: The gender issue revisited. J. Acquir Immune Defic. Syndr. 32, 452–461 (2003).

    Article  PubMed  Google Scholar 

  53. Stunnenberg, M., van Hamme, J. L., Trimp, M., Gringhuis, S. I. & Geijtenbeek, T. B. H. Abortive Hiv-1 Rna Induces Pro-Il-1beta maturation via protein kinase Pkr and inflammasome activation in humans. Eur. J. Immunol. 51, 2464–2477 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cordero, O. J., Salgado, F. J., Vinuela, J. E. & Nogueira, M. Interleukin-12 enhances Cd26 expression and dipeptidyl peptidase Iv function on human activated lymphocytes. Immunobiology 197, 522–533 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Decker, M. L., Grobusch, M. P. & Ritz, N. Influence of age and other factors on cytokine expression profiles in healthy children-a systematic review. Front Pediatr. 5, 255 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Decker, M. L., Gotta, V., Wellmann, S. & Ritz, N. Cytokine profiling in healthy children shows association of age with cytokine concentrations. Sci. Rep. 7, 17842 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kollmann, T. R., Levy, O., Montgomery, R. R. & Goriely, S. Innate immune function by toll-like receptors: distinct responses in newborns and the elderly. Immunity 37, 771–783 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hyjek, E. et al. Cytokine patterns during progression to aids in children with perinatal Hiv infection. J. Immunol. 155, 4060–4071 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Madhivanan, P. et al. Clinical manifestations of Hiv infected children. Indian J. Pediatr. 70, 615–620 (2003).

    Article  PubMed  Google Scholar 

  60. Gasiorowski, K., Brokos, B., Echeverria, V., Barreto, G. E. & Leszek, J. Rage-Tlr crosstalk sustains chronic inflammation in neurodegeneration. Mol. Neurobiol. 55, 1463–1476 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Bektas, A., Schurman, S. H., Sen, R. & Ferrucci, L. Aging, inflammation and the environment. Exp. Gerontol. 105, 10–18 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Marnell, C. S., Bick, A. & Natarajan, P. Clonal hematopoiesis of indeterminate potential (Chip): Linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J. Mol. Cell Cardiol. 161, 98–105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Soysal, P., Arik, F., Smith, L., Jackson, S. E. & Isik, A. T. Inflammation, frailty and cardiovascular disease. Adv. Exp. Med. Biol. 1216, 55–64 (2020).

    Article  PubMed  Google Scholar 

  64. Cobo, G., Lindholm, B. & Stenvinkel, P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol. Dial. Transpl. 33, iii35–iii40 (2018).

    Article  CAS  Google Scholar 

  65. Gelman, A., Hill, J. & Yajima, M. Why we (usually) don’t have to worry about multiple comparisons. J. Res. Educ. Effect. 5, 189–211 (2012).

    Google Scholar 

  66. Rothman, K. J. No adjustments are needed for multiple comparisons. Epidemiology 1, 43–46 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Clevert, D.-A. et al. Increasing the discovery power of -omics studies. Syst. Biomed. 1, 84–93 (2013).

    Article  Google Scholar 

  68. Taylor, B. S., Sobieszczyk, M. E., McCutchan, F. E. & Hammer, S. M. The challenge of Hiv-1 subtype diversity. N. Engl. J. Med. 358, 1590–1602 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our study participants, their families, our colleagues at the study sites and data collector teams. We thank the leadership of Boston Children’s Hospital, including Drs. Gary Fleisher and Kevin Churchwell as well as Mr. August Cervini, for their support of the Precision Vaccines Program. Mirabel C. Nguyen provided critical review of the manuscript. We also thank Andrea Oletto for PENTA Foundation data management as well as Ilaria Pepponi and Chiara Medri for sample management at Bambino Gesù Childrens’ Hospital.

Funding

Supported by EPIICAL (Early-treated Perinatally HIV-infected Individuals: Improving Children’s Actual Life with Novel Immunotherapeutic Strategies) project, funded through an independent grant by ViiV Healthcare United Kingdom. This work is part of the EPIICAL project (http://www.epiical.org/), supported by PENTA-ID foundation (http://penta-id.org/), funded through an independent grant by ViiV Healthcare United Kingdom

Author information

Authors and Affiliations

Authors

Consortia

Contributions

A.N.N., A.L.P., K.K.S. conceived the paper design and analyzed data; A.N.N., A.L.P., K.K.S. wrote the manuscript; P.P., N.C., C.F., A.T., P.R., A.R., A.N., S.D. designed the study, enrolled participants, collected and managed clinical data; A.O., C.S., J.D.A. performed statistical analysis; A.N.N., A.L.P., O.A.O., L.D.A., A.R., N.C., E.M., B.F. performed experiments; P.S., O.L., P.P., K.K.S. supervised the work. All authors read, revised, and approved the manuscript.

Corresponding authors

Correspondence to Paolo Palma or Kinga K. Smolen.

Ethics declarations

Competing interests

O.L. is a named inventor on patents relating to vaccine adjuvants and human in vitro systems to model vaccine action. O.L. reports a sponsored research agreement from GlaxoSmithKline (GSK) to evaluate vaccine adjuvants in vitro.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, A.N., Plotkin, A.L., Odumade, O.A. et al. Effective early antiretroviral therapy in perinatal-HIV infection reduces subsequent plasma inflammatory profile. Pediatr Res 94, 1667–1674 (2023). https://doi.org/10.1038/s41390-023-02669-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02669-0

Search

Quick links