Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

FGF21 modulates hippocampal cold-shock proteins and CA2-subregion proteins in neonatal mice with hypoxia–ischemia

Abstract

Background

Fibroblast growth factor 21 (FGF21) is a neuroprotectant with cognitive enhancing effects but with poorly characterized mechanism(s) of action, particularly in females. Prior studies suggest that FGF21 may regulate cold-shock proteins (CSPs) and CA2-marker proteins in the hippocampus but empirical evidence is lacking.

Methods

We assessed in normothermic postnatal day (PND) 10 female mice, if hypoxic–ischemic (HI) brain injury (25 min 8% O2/92% N2) altered endogenous levels of FGF21 in serum or in the hippocampus, or its receptor β-klotho. We also tested if systemic administration of FGF21 (1.5 mg/kg) modulated hippocampal CSPs or CA2 proteins. Finally, we measured if FGF21 therapy altered markers of acute hippocampal injury.

Results

HI increased endogenous serum FGF21 (24 h), hippocampal tissue FGF21 (4d), and decreased hippocampal β-klotho levels (4d). Exogenous FGF21 therapy modulated hippocampal CSP levels, and dynamically altered hippocampal CA2 marker expression (24 h and 4d). Finally, FGF21 ameliorated neuronal damage markers at 24 h but did not affect GFAP (astrogliosis) or Iba1 (microgliosis) levels at 4d.

Conclusions

FGF21 therapy modulates CSP and CA2 protein levels in the injured hippocampus. These proteins serve different biological functions, but our findings suggest that FGF21 administration modulates them in a homeostatic manner after HI.

Impact

  • Hypoxic–ischemic (HI) injury in female post-natal day (PND) 10 mice decreases hippocampal RNA binding motif 3 (RBM3) levels in the normothermic newborn brain.

  • HI injury in normothermic newborn female mice alters serum and hippocampal fibroblast growth factor 21 (FGF21) levels 24 h post-injury.

  • HI injury in normothermic newborn female mice alters hippocampal levels of N-terminal EF-hand calcium binding protein 2 (NECAB2) in a time-dependent manner.

  • Exogenous FGF21 therapy ameliorates the HI-mediated loss of hippocampal cold-induced RNA-binding protein (CIRBP).

  • Exogenous FGF21 therapy modulates hippocampal levels of CA2-marker proteins after HI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effect of HI on endogenous FGF21 and hippocampal β-klotho levels.
Fig. 2: Validation of CSP detecting antibodies and the effect of HI on neurodevelopmental expression of hippocampal CSP proteins.
Fig. 3: The effect of FGF21 administration in HI-injured pups on hippocampal CSPs.
Fig. 4: The effect of FGF21 administration in HI-injured pups on hippocampal CA2 marker proteins.
Fig. 5: Acute brain injury markers in normothermic PND10 female mice subjected to HI.
Fig. 6: The effect of FGF21 administration on acute brain injury markers.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its Supplementary Files.

References

  1. Lawn, J. E. et al. Every newborn: progress, priorities, and potential beyond survival. Lancet 384, 189–205 (2014).

    Article  PubMed  Google Scholar 

  2. Lee, A. C. et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr. Res. 74, 50–72 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Acun, C. et al. Trends of neonatal hypoxic-ischemic encephalopathy prevalence and associated risk factors in the United States, 2010 to 2018. Am. J. Obstet. Gynecol. https://doi.org/10.1016/j.ajog.2022.06.002 (2022).

  4. Sandoval Karamian, A. G. et al. Neonatal encephalopathy: etiologies other than hypoxic-ischemic encephalopathy. Semin. Fetal Neonatal Med. 26, 101272 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Schiering, I. A. et al. Correlation between clinical and histologic findings in the human neonatal hippocampus after perinatal asphyxia. J. Neuropathol. Exp. Neurol. 73, 324–334 (2014).

    Article  PubMed  Google Scholar 

  6. Maneru, C. et al. Residual hippocampal atrophy in asphyxiated term neonates. J. Neuroimaging 13, 68–74 (2003).

    Article  PubMed  Google Scholar 

  7. Thayyil, S. et al. Hypothermia for moderate or severe neonatal encephalopathy in low-income and middle-income countries (Helix): a randomised controlled trial in India, Sri Lanka, and Bangladesh. Lancet Glob. Health 9, e1273–e1285 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tagin, M. A., Woolcott, C. G., Vincer, M. J., Whyte, R. K. & Stinson, D. A. Hypothermia for neonatal hypoxic ischemic encephalopathy: an updated systematic review and meta-analysis. Arch. Pediatr. Adolesc. Med. 166, 558–566 (2012).

    Article  PubMed  Google Scholar 

  9. Ye, L. et al. Fgf21 promotes functional recovery after hypoxic-ischemic brain injury in neonatal rats by activating the Pi3k/Akt signaling pathway via Fgfr1/Beta-klotho. Exp. Neurol. 317, 34–50 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, P. et al. Mild cold exposure modulates fibroblast growth factor 21 (Fgf21) diurnal rhythm in humans: relationship between Fgf21 levels, lipolysis, and cold-induced thermogenesis. J. Clin. Endocrinol. Metab. 98, E98–E102 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Jackson, T. C., Kotermanski, S. E. & Kochanek, P. M. Infants uniquely express high levels of Rbm3 and other cold-adaptive neuroprotectant proteins in the human brain. Dev. Neurosci. 40, 325–336 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Jackson, T. C., Janesko-Feldman, K., Carlson, S. W., Kotermanski, S. E. & Kochanek, P. M. Robust Rbm3 and beta-klotho expression in developing neurons in the human brain. J. Cereb. Blood Flow Metab. 39, 2355–2367 (2019).

  13. Bookout, A. L. et al. Fgf21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 19, 1147–1152 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Talukdar, S. et al. Fgf21 regulates sweet and alcohol preference. Cell Metab. 23, 344–349 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Leng, Y. et al. Fgf-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol. Psychiatry 20, 215–223 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Peretti, D. et al. Rbm3 mediates structural plasticity and protective effects of cooling in neurodegeneration. Nature 518, 236–239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, B. et al. The overexpression of Rbm3 alleviates TBI-induced behaviour impairment and AD-like tauopathy in mice. J. Cell. Mol. Med. 24, 9176–9188 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu, X. et al. Rbm3 promotes neurogenesis in a niche-dependent manner via Imp2-Igf2 signaling pathway after hypoxic-ischemic brain injury. Nat. Commun. 10, 3983 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jackson, T. C. et al. Cold stress protein Rbm3 responds to temperature change in an ultra-sensitive manner in young neurons. Neuroscience 305, 268–278 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Avila-Gomez, P. et al. Associations between RNA-binding motif protein 3, fibroblast growth factor 21, and clinical outcome in patients with stroke. J. Clin. Med. 11, 949 (2022).

  21. Laham, B. J., Diethorn, E. J. & Gould, E. Newborn mice form lasting Ca2-dependent memories of their mothers. Cell Rep. 34, 108668 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Forsstrom, S. et al. Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions. Cell Metab. 30, 1040.e7–1054.e7 (2019).

    Article  Google Scholar 

  23. Jackson, T. C. et al. Hypoxia-ischemia-mediated effects on neurodevelopmentally regulated cold-shock proteins in neonatal mice under strict temperature control. Pediatr. Res. https://doi.org/10.1038/s41390-022-01990-4 (2022).

  24. Jackson, T. C. et al. The nuclear splicing factor rna binding motif 5 promotes caspase activation in human neuronal cells, and increases after traumatic brain injury in mice. J. Cereb. Blood Flow. Metab. 35, 655–666 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In Proc. SIGCHI Conference on Human Factors in Computing Systems 143–146 (Association for Computing Machinery, 2011).

  26. Elkin, L. A., Kay, M., Higgins, J. J. & Wobbrock, J. O. An aligned rank transform procedure for multifactor contrast tests. In The 34th Annual ACM Symposium on User Interface Software and Technology 754–768 (Association for Computing Machinery, 2021).

  27. Herrmann, J. R. et al. Serum levels of the cold stress hormones Fgf21 and Gdf-15 after cardiac arrest in infants and children enrolled in single center therapeutic hypothermia clinical trials. Resuscitation 172, 173–180 (2022).

    Article  PubMed  Google Scholar 

  28. Hondares, E. et al. Hepatic Fgf21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab. 11, 206–212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, G. et al. Hypoxia-induced adipose lipolysis requires fibroblast growth factor 21. Front. Pharmacol. 11, 1279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, B. et al. Central Fgf21 production regulates memory but not peripheral metabolism. Cell Rep. 40, 111239 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mamtilahun, M. et al. Plasma from healthy donors protects blood-brain barrier integrity via Fgf21 and improves the recovery in a mouse model of cerebral ischaemia. Stroke Vasc. Neurol. 6, 561–571 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Weis, S. N. et al. Autophagy in the brain of neonates following hypoxia-ischemia shows sex- and region-specific effects. Neuroscience 256, 201–209 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Xia, W., Su, L. & Jiao, J. Cold-induced protein Rbm3 orchestrates neurogenesis via modulating Yap mRNA stability in cold stress. J. Cell Biol. 217, 3464–3479 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, M. et al. Cold-inducible RNA-binding protein as a novel target to alleviate blood-brain barrier damage induced by cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 157, 986–996.e985 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Wojnacki, J. et al. Role of Vamp7-dependent secretion of reticulon 3 in neurite growth. Cell Rep. 33, 108536 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Bastide, A. et al. Rtn3 is a novel cold-induced protein and mediates neuroprotective effects of Rbm3. Curr. Biol. 27, 638–650 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhou, Y. et al. Cirbp-Psd95 axis protects against hypobaric hypoxia-induced aberrant morphology of hippocampal dendritic spines and cognitive deficits. Mol. Brain 14, 129 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi, Q. et al. Reduced amyloid deposition in mice overexpressing Rtn3 is adversely affected by preformed dystrophic neurites. J. Neurosci. 29, 9163–9173 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, S. E. et al. Rgs14 is a natural suppressor of both synaptic plasticity in Ca2 neurons and hippocampal-based learning and memory. Proc. Natl Acad. Sci. USA 107, 16994–16998 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kanazawa, Y. et al. Degradation of Pep-19, a calmodulin-binding protein, by calpain is implicated in neuronal cell death induced by intracellular Ca2+ overload. Neuroscience 154, 473–481 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, K. K. W. Calpain and caspase: can you tell the difference? Trends Neurosci. 23, 20–26 (2000).

    Article  PubMed  Google Scholar 

  42. Chaitanya, G. V., Steven, A. J. & Babu, P. P. Parp-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun. Signal. 8, 31 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun, Y. et al. Modulation of the astrocyte-neuron lactate shuttle system contributes to neuroprotective action of fibroblast growth factor 21. Theranostics 10, 8430–8445 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, Y. et al. Maternal high-fat diet alters the characteristics of astrocytes and worsens the outcome of stroke in rat offspring, which improves after Fgf21 administration. Front. Cell Dev. Biol. 9, 731698 (2021).

    Article  PubMed  Google Scholar 

  45. Villapol, S. et al. Early sex differences in the immune-inflammatory responses to neonatal ischemic stroke. Int. J. Mol. Sci. 20, 3809 (2019).

  46. Mirza, M. A., Ritzel, R., Xu, Y., McCullough, L. D. & Liu, F. Sexually dimorphic outcomes and inflammatory responses in hypoxic-ischemic encephalopathy. J. Neuroinflammation 12, 32 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhu, C. et al. Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J. Neurochem. 96, 1016–1027 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Ziai, M. R., Sangameswaran, L., Hempstead, J. L., Danho, W. & Morgan, J. I. An immunochemical analysis of the distribution of a brain-specific polypeptide, Pep-19. J. Neurochem. 51, 1771–1776 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, D. et al. Fgf21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. J. Neuroinflammation 17, 257 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, J. et al. Fgf21 protects the blood-brain barrier by upregulating ppargamma via Fgfr1/beta-klotho after traumatic brain injury. J. Neurotrauma 35, 2091–2103 (2018).

    Article  PubMed  Google Scholar 

  51. Sertel, S. M., von Elling-Tammen, M. S. & Rizzoli, S. O. The mRNA-binding protein Rbm3 regulates activity patterns and local synaptic translation in cultured hippocampal neurons. J. Neurosci. 41, 1157–1173 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alhajlah, S., Thompson, A. M. & Ahmed, Z. Overexpression of reticulon 3 enhances CNS axon regeneration and functional recovery after traumatic injury. Cells 10, 2015 (2021).

  53. Wei, P., Blundon, J. A., Rong, Y., Zakharenko, S. S. & Morgan, J. I. Impaired locomotor learning and altered cerebellar synaptic plasticity in Pep-19/Pcp4-null mice. Mol. Cell Biol. 31, 2838–2844 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Canela, L. et al. The association of metabotropic glutamate receptor type 5 with the neuronal Ca2+-binding protein 2 modulates receptor function. J. Neurochem. 111, 555–567 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Purgert, C. A. et al. Intracellular Mglur5 can mediate synaptic plasticity in the hippocampus. J. Neurosci. 34, 4589–4598 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by NIH/NINDS grant R01NS105721 to T.C.J., by the University of South Florida Morsani College of Medicine start-up funds to T.C.J., by a Lloyd Reback Family Gift, Laerdal Foundation for Acute Medicine grant, Zoll Foundation grant, and T32 (2T32HD040686) to J.R.H., and by the Ake N. Grenvik Chair in Critical Care Medicine to P.M.K.

Author information

Authors and Affiliations

Authors

Contributions

T.C.J. conceived the study. T.C.J., J.R.H., and P.M.K. contributed to the study design. J.R.H. and T.C.J. drafted the manuscript. V.A.V., K.G., K.J.-F., and J.S. contributed to experiments and data acquisition. T.C.J., P.M.K., and J.R.H. contributed to data analysis. P.M.K., V.A.V., K.G., and K.J.-F. edited the draft and contributed to the final submitted version.

Corresponding author

Correspondence to Travis C. Jackson.

Ethics declarations

Competing interests

T.C.J. and P.M.K. are co-inventors on USPTO patent No. 11,638, 745 and on USPTO patent application No. 18/166,290 titled: “Method to Improve Neurologic Outcomes in Temperature Managed Patients”.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrmann, J.R., Kochanek, P.M., Vagni, V.A. et al. FGF21 modulates hippocampal cold-shock proteins and CA2-subregion proteins in neonatal mice with hypoxia–ischemia. Pediatr Res 94, 1355–1364 (2023). https://doi.org/10.1038/s41390-023-02652-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02652-9

This article is cited by

Search

Quick links