Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Molsidomine decreases hyperoxia-induced lung injury in neonatal rats

Abstract

Background

The study’s objective is to evaluate if Molsidomine (MOL), an anti-oxidant, anti-inflammatory, and anti-apoptotic drug, is effective in treating hyperoxic lung injury (HLI).

Methods

The study consisted of four groups of neonatal rats characterized as the Control, Control+MOL, HLI, HLI + MOL groups. Near the end of the study, the lung tissue of the rats were evaluated with respect to apoptosis, histopathological damage, anti-oxidant and oxidant capacity as well as degree of inflammation.

Results

Compared to the HLI group, malondialdehyde and total oxidant status levels in lung tissue were notably reduced in the HLI + MOL group. Furthermore, mean superoxide dismutase, glutathione peroxidase, and glutathione activities/levels in lung tissue were significantly higher in the HLI + MOL group as compared to the HLI group. Tumor necrosis factor-α and interleukin-1β elevations associated with hyperoxia were significantly reduced following MOL treatment. Median histopathological damage and mean alveolar macrophage numbers were found to be higher in the HLI and HLI + MOL groups when compared to the Control and Control+MOL groups. Both values were increased in the HLI group when compared to the HLI + MOL group.

Conclusions

Our research is the first to demonstrate that bronchopulmonary dysplasia may be prevented through the protective characteristics of MOL, an anti-inflammatory, anti-oxidant, and anti-apoptotic drug.

Impact

  • Molsidomine prophylaxis significantly decreased the level of oxidative stress markers.

  • Molsidomine administration restored the activities of antioxidant enzymes.

  • Molsidomine prophylaxis significantly reduced the levels of inflammatory cytokines.

  • Molsidomine may provide a new and promising therapy for BPD in the future.

  • Molsidomine prophylaxis decreased lung damage and macrophage infiltration in the tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Histopathological staining of lung tissues.
Fig. 2: Quantitative analysis of hyperoxic lung injury.
Fig. 3: The administration of MOL reduced the alveolar macrophage number (thin black arrows).
Fig. 4: Immunohistochemical staining of Caspase-3 revealed the antiapoptotic effect of MOL in the hyperoxia-induced lung injury model.
Fig. 5: TUNEL staining of rat lung tissue showed the apoptotic death of nuclear cells (purple arrows) in the model and immunohistochemical staining of TUNEL confirmed the antiapoptotic effect of MOL in the hyperoxia-induced lung injury model.

Similar content being viewed by others

Data availability

All datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lignelli, E., Palumbo, F., Myti, D. & Morty, R. E. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 317, L832–L887 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Thomas, W. & Speer, C. P. Prevention and treatment of bronchopulmonary dysplasia: current status and future prospects. J. Perinatol. 27, S26–S32 (2007).

    Article  CAS  Google Scholar 

  3. Hwang, J. S. & Rehan, V. K. Recent advances in bronchopulmonary dysplasia: pathophysiology, prevention, and treatment. Lung 196, 129–138 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ozdemir, R. et al. Clarithromycin in preventing bronchopulmonary dysplasia in ureaplasma urealyticum-positive preterm infants. Pediatrics 128, e1496–e1501 (2011).

    Article  PubMed  Google Scholar 

  5. Bancalari, E. & Jain, D. Bronchopulmonary dysplasia: 50 years after the original description. Neonatology 115, 384–391 (2019).

    Article  PubMed  Google Scholar 

  6. Thebaud, B. et al. Bronchopulmonary dysplasia. Nat. Rev. Dis. Prim. 5, 78 (2019).

    Article  PubMed  Google Scholar 

  7. Tokuriki, S. et al. Treatment with geranylgeranylacetone induces heat shock protein 70 and attenuates neonatal hyperoxic lung injury in a model of bronchopulmonary dysplasia. Lung 195, 469–476 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Endesfelder, S., Strauss, E., Bendix, I., Schmitz, T. & Buhrer, C. Prevention of oxygen-induced inflammatory lung injury by caffeine in neonatal rats. Oxid. Med. Cell. Longev. 2020, 3840124 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lingappan, K. et al. Beta-naphthoflavone treatment attenuates neonatal hyperoxic lung injury in wild type and Cyp1a2-knockout mice. Toxicol. Appl. Pharmacol. 339, 133–142 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Ofman, G. & Tipple, T. E. Antioxidants & bronchopulmonary dysplasia: beating the system or beating a dead horse? Free Radic. Biol. Med. 142, 138–145 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Cifci, A. et al. Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. Turk. J. Med. Sci. 48, 892–900 (2018).

    CAS  PubMed  Google Scholar 

  12. Savani, R. C. Modulators of inflammation in bronchopulmonary dysplasia. Semin. Perinatol. 42, 459–470 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen, S., Wu, Q., Zhong, D., Li, C. & Du, L. Caffeine prevents hyperoxia-induced lung injury in neonatal mice through Nlrp3 inflammasome and Nf-Kappab pathway. Respir. Res. 21, 140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morty, R. E. Recent advances in the pathogenesis of BPD. Semin. Perinatol. 42, 404–412 (2018).

    Article  PubMed  Google Scholar 

  15. Ehrhardt, H. et al. Absence of TNF-alpha enhances inflammatory response in the newborn lung undergoing mechanical ventilation. Am. J. Physiol. Lung Cell. Mol. Physiol. 310, L909–L918 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li, H., Wang, G., Lin, S., Wang, C. & Zha, J. Loss of interleukin-6 enhances the inflammatory response associated with hyperoxia-induced lung injury in neonatal mice. Exp. Ther. Med. 17, 3101–3107 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, S. H. & Tsao, P. N. Phenotypes of bronchopulmonary dysplasia. Int. J. Mol. Sci. 21, 6112 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sherlock, L. G., Wright, C. J., Kinsella, J. P. & Delaney, C. Inhaled nitric oxide use in neonates: balancing what is evidence-based and what is physiologically sound. Nitric Oxide 95, 12–16 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Mandell, E. W., Kratimenos, P., Abman, S. H. & Steinhorn, R. H. Drugs for the prevention and treatment of bronchopulmonary dysplasia. Clin. Perinatol. 46, 291–310 (2019).

    Article  PubMed  Google Scholar 

  20. Akter, F., Coghlan, G. & de Mel, A. Nitric oxide in paediatric respiratory disorders: novel interventions to address associated vascular phenomena? Ther. Adv. Cardiovasc. Dis. 10, 256–270 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kilic, T. et al. Protective and therapeutic effect of molsidomine on bleomycin-induced lung fibrosis in rats. Inflammation 37, 1167–1178 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Toplu, Y. et al. The protective role of molsidomine on the cisplatin-induced ototoxicity. Indian J. Otolaryngol. Head. Neck Surg. 66, 314–319 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ozer, M. A. et al. Effects of molsidomine on retinopathy and oxidative stress induced by radiotheraphy in rat eyes. Curr. Eye Res. 42, 803–809 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Garcia-Cenador, M. B. et al. Comparative study of bacterial translocation control with nitric oxide donors and Cox2 inhibitor. Enferm. Infecc. Microbiol. Clin. 34, 490–498 (2016).

    Article  PubMed  Google Scholar 

  25. Bentli, R. et al. Molsidomine prevents cisplatin-induced hepatotoxicity. Arch. Med. Res. 44, 521–528 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Ozdemir, R. et al. Colchicine protects against hyperoxic lung injury in neonatal rats. Neonatology 102, 265–269 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Ozdemir, R. et al. Dexpanthenol therapy reduces lung damage in a hyperoxic lung injury in neonatal rats. J. Matern. Fetal Neonatal Med. 29, 1801–1807 (2016).

    CAS  PubMed  Google Scholar 

  28. Gurpinar, T. et al. The effects of the melatonin treatment on the oxidative stress and apoptosis in diabetic eye and brain. Sci. World J. 2012, 498489 (2012).

    Article  Google Scholar 

  29. Kamisli, S., Ciftci, O., Taslidere, A., Turkmen, N. B. & Ozcan, C. The beneficial effects of 18 beta-glycyrrhetinic acid on the experimental autoimmune encephalomyelitis (EAE) in C57bl/6 mouse model. Immunopharmacol. Immunotoxicol. 40, 344–352 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Alvira, C. M. & Morty, R. E. Can we understand the pathobiology of bronchopulmonary dysplasia? J. Pediatr. 190, 27–37 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Berkelhamer, S. K. & Farrow, K. N. Developmental regulation of antioxidant enzymes and their impact on neonatal lung disease. Antioxid. Redox Signal. 21, 1837–1848 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Antosova, M. et al. Physiology of nitric oxide in the respiratory system. Physiol. Res. 66, S159–S172 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Wink, D. A. et al. Nitric oxide protects against the cytotoxic effects of reactive oxygen species. Ann. NY Acad. Sci. 738, 265–278 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Chander, V. & Chopra, K. Renal protective effect of molsidomine and L-arginine in ischemia-reperfusion induced injury in rats. J. Surg. Res. 128, 132–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Witkowski, S. M. et al. Analysis of interleukins 6, 8, 10 and 17 in the lungs of premature neonates with bronchopulmonary dysplasia. Cytokine 131, 155118 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Davies, P. L. et al. Relationship of proteinases and proteinase inhibitors with microbial presence in chronic lung disease of prematurity. Thorax 65, 246–251 (2010).

    Article  PubMed  Google Scholar 

  37. Rodriguez-Pena, A., Garcia-Criado, F. J., Eleno, N., Arevalo, M. & Lopez-Novoa, J. M. Intrarenal administration of molsidomine, a molecule releasing nitric oxide, reduces renal ischemia-reperfusion injury in rats. Am. J. Transplant. 4, 1605–1613 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Kang, J. L. et al. Inhaled nitric oxide attenuates acute lung injury via inhibition of nuclear factor-kappa B and inflammation. J. Appl. Physiol. 92, 795–801 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Kinsella, J. P. et al. Effects of inhaled nitric oxide on pulmonary edema and lung neutrophil accumulation in severe experimental hyaline membrane disease. Pediatr. Res. 41, 457–463 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Xia, H. P., Huang, G. Y., Zhu, J. X. & Sun, B. Effect of inhalation of nebulized no donor substance on acute hypoxic lung injury in newborn piglets. Chin. Med. J. 121, 1622–1626 (2008).

    Article  PubMed  Google Scholar 

  41. Thomassen, M. J. & Kavuru, M. S. Human alveolar macrophages and monocytes as a source and target for nitric oxide. Int. Immunopharmacol. 1, 1479–1490 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Cao, L. et al. Regulation of activity of nuclear factor-kappaB and activator protein-1 by nitric oxide, surfactant and glucocorticoids in alveolar macrophages from piglets with acute lung injury. Acta Pharmacol. Sin. 24, 1316–1323 (2003).

    CAS  PubMed  Google Scholar 

  43. Zhang, D. et al. Autophagy inducers restore impaired autophagy, reduce apoptosis, and attenuate blunted alveolarization in hyperoxia-exposed newborn rats. Pediatr. Pulmonol. 53, 1053–1066 (2018).

    Article  PubMed  Google Scholar 

  44. May, M. et al. Apoptosis and proliferation in lungs of ventilated and oxygen-treated preterm infants. Eur. Respir. J. 23, 113–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Tang, J. R. et al. Early inhaled nitric oxide treatment decreases apoptosis of endothelial cells in neonatal rat lungs after vascular endothelial growth factor inhibition. Am. J. Physiol. Lung Cell. Mol. Physiol. 293, L1271–L1280 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Li, C. Q. & Wogan, G. N. Nitric oxide as a modulator of apoptosis. Cancer Lett. 226, 1–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Wright, C. J. et al. No inhibits hyperoxia-induced NF-KappaB activation in neonatal pulmonary microvascular endothelial cells. Pediatr. Res. 68, 484–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DeMeester, S. L. et al. Nitric oxide inhibits stress-induced endothelial cell apoptosis. Crit. Care Med. 26, 1500–1509 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Jobe, A. H. Mechanisms of lung injury and bronchopulmonary dysplasia. Am. J. Perinatol. 33, 1076–1078 (2016).

    Article  PubMed  Google Scholar 

  50. Bonadies, L. et al. Present and future of bronchopulmonary dysplasia. J. Clin. Med. 9, 1539 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

R.O. and I.K.G. participated in the study design, analyzed data, performed experiments, interpreted results, and edited the manuscript. S.T. and A.C.T. participated in the study design, prepared figures, interpreted results, analyzed data, performed experiments, and edited the manuscript. K.T. and C.C.G. contributed to conceptualizing the study, interpreted results, performed experiments, and prepared figures. H.T., M.F.D., H.K., and M.A. conceptualized the study and its design, interpreted results, performed experiments and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ramazan Ozdemir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All procedures performed in studies involving animals were in accordance with the ethical standards of the Ethical Committee of Experimental Animals of the Faculty of Medicine in Inonu University, at which the studies were conducted.

Consent for publication

The manuscript is approved by all authors for publication.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, M., Gokce, I.K., Turgut, H. et al. Molsidomine decreases hyperoxia-induced lung injury in neonatal rats. Pediatr Res 94, 1341–1348 (2023). https://doi.org/10.1038/s41390-023-02643-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02643-w

Search

Quick links