Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Genetic and histopathological analysis of spermatogenesis after short-term testicular torsion in rats

Abstract

Background

Patients with testicular torsion (TT) may exhibit impaired spermatogenesis from reperfusion injury after detorsion surgery. Alteration in the expressions of spermatogenesis-related genes induced by TT have not been fully elucidated.

Methods

Eight-week-old Sprague-Dawley rats were grouped as follows: group 1 (sham-operated), group 2 (TT without reperfusion) and group 3 (TT with reperfusion). TT was induced by rotating the left testis 720° for 1 h. Testicular reperfusion proceeded for 24 h. Histopathological examination, oxidative stress biomarker measurements, RNA sequencing and RT-PCR were performed.

Results

Testicular ischemia/reperfusion injury induced marked histopathological changes. Germ cell apoptosis was significantly increased in group 3 compared with group 1 and 2 (mean apoptotic index: 26.22 vs. 0.64 and 0.56; p = 0.024, and p = 0.024, respectively). Johnsen score in group 3 was smaller than that in group 1 and 2 (mean: 8.81 vs 9.45 and 9.47 points/tubule; p = 0.001, p < 0.001, respectively). Testicular ischemia/reperfusion injury significantly upregulated the expression of genes associated with apoptosis and antioxidant enzymes and significantly downregulated the expression of genes associated with spermatogenesis.

Conclusion

One hour of TT followed by reperfusion injury caused histopathological testicular damage. The relatively high Johnsen score indicated spermatogenesis was maintained. Genes associated with spermatogenesis were downregulated in the TT rat model.

Impact

  • How ischemia/reperfusion injury in testicular torsion (TT) affects the expressions of genes associated with spermatogenesis has not been fully elucidated.

  • This is the first study to report comprehensive gene expression profiles using next generation sequencing for an animal model of TT.

  • Our results revealed that ischemia/reperfusion injury downregulated the expression of genes associated with spermatogenesis and sperm function in addition to histopathological damage, even though the duration of ischemia was short.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photomicrographs of testicular tissues stained with hematoxylin and eosin.
Fig. 2: TUNEL staining of testicular tissues.
Fig. 3: Gene expression profiling of testis tissue.
Fig. 4: Oxidative stress biomarkers in testis tissue.

Similar content being viewed by others

Data availability

The RNA-seq dataset generated during and/or analyzed during the current study is available in the DDBJ Sequenced Read Archive (DRA) under the accession number DRA015199.

References

  1. Williamson, R. C. Torsion of the testis and allied conditions. Br. J. Surg. 63, 465–476 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Sood, A. et al. Treatment patterns, testicular loss and disparities in inpatient surgical management of testicular torsion in boys: a population-based study 1998–2010. BJU Int. 118, 969–979 (2016).

    Article  PubMed  Google Scholar 

  3. Rezakhaniha, B. et al. The evaluation of citral effects on experimental unilateral testicular ischemia/reperfusion injury. Andrologia 54, e14605 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Karaguzel, E. et al. Investigation of tyrphostin Ag 556 for testicular torsion-induced ischemia reperfusion injury in rat. J. Pediatr. Urol. 10, 223–229 (2014).

    Article  PubMed  Google Scholar 

  5. Fouad, A. A., Qutub, H. O. & Jresat, I. Dose-dependent protective effect of baicalin against testicular torsion-detorsion in rats. Andrologia 49, e12580 (2017).

  6. Filho, D. W., Torres, M. A., Bordin, A. L., Crezcynski-Pasa, T. B. & Boveris, A. Spermatic cord torsion, reactive oxygen and nitrogen species and ischemia-reperfusion injury. Mol. Asp. Med. 25, 199–210 (2004).

    Article  Google Scholar 

  7. Cuzzocrea, S., Riley, D. P., Caputi, A. P. & Salvemini, D. Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharm. Rev. 53, 135–159 (2001).

    CAS  PubMed  Google Scholar 

  8. Akçora, B. et al. Gradual detorsion of torsioned rat testis attenuates ischemia reperfusion injury. J. Pediatr. Surg. 43, 1879–1884 (2008).

    Article  PubMed  Google Scholar 

  9. Shokoohi, M. et al. Hesperidin attenuated apoptotic-related genes in testicle of a male rat model of varicocoele. Andrology 8, 249–258 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Dolatkhah, M. A. et al. Fumaria parviflora regulates oxidative stress and apoptosis gene expression in the rat model of varicocele induction. Andrologia 52, e13826 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Shokoohi, M. et al. Minocycline can reduce testicular apoptosis related to varicocele in male rats. Andrologia 54, e14375 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Somuncu, S. et al. Protective effects of trapidil in ischemia-reperfusion injury due to testicular torsion and detorsion: an experimental study. Int J. Urol. 13, 601–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Woźniak, B. et al. Lipid peroxidation and activity of some antioxidant enzymes in patients with glioblastoma and astrocytoma. J. Neurooncol. 81, 21–26 (2007).

    Article  PubMed  Google Scholar 

  14. Cay, A. et al. The effects of N-acetylcysteine on antioxidant enzyme activities in experimental testicular torsion. J. Surg. Res. 131, 199–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Turner, T. T., Tung, K. S., Tomomasa, H. & Wilson, L. W. Acute testicular ischemia results in germ cell-specific apoptosis in the rat. Biol. Reprod. 57, 1267–1274 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Lysiak, J. J., Turner, S. D. & Turner, T. T. Molecular pathway of germ cell apoptosis following ischemia/reperfusion of the rat testis. Biol. Reprod. 63, 1465–1472 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Ganjiani, V., Ahmadi, N., Divar, M. R., Sharifiyazdi, H. & Meimandi-Parizi, A. Protective effects of crocin on testicular torsion/detorsion in rats. Theriogenology 173, 241–248 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Jacobsen, F. M. et al. The impact of testicular torsion on testicular function. World J. Mens. Health 38, 298–307 (2020).

    Article  PubMed  Google Scholar 

  19. Arap, M. A. et al. Late hormonal levels, semen parameters, and presence of antisperm antibodies in patients treated for testicular torsion. J. Androl. 28, 528–532 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Azizollahi, S. et al. Alteration of spermatogenesis following spermatogonial stem cells transplantation in testicular torsion-detorsion mice. J. Assist Reprod. Genet 33, 771–781 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wei, S. M., Yan, Z. Z. & Zhou, J. Role of camp-responsive element modulator-tau (cremtau) in ipsilateral testicular injury after unilateral testicular torsion-detorsion. Fertil. Steril. 89, 1737–1742 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Matzuk, M. M. & Lamb, D. J. The biology of infertility: research advances and clinical challenges. Nat. Med. 14, 1197–1213 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, C. M. et al. Rna-seq expression profiling of rat mcao model following reperfusion orexin-A. Oncotarget 8, 113066–113081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu, F. et al. Analysis of differentially expressed long noncoding rna in renal ischemia-reperfusion injury. Kidney Blood Press Res. 45, 686–701 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Abat, D. et al. Beneficial effects of rolipram, a phosphodiesterase 4 specific inhibitor, on testicular torsion-detorsion injury in rats. J. Pediatr. Surg. 53, 2261–2265 (2018).

    Article  PubMed  Google Scholar 

  26. Johnsen, S. G. Testicular biopsy score count-a method for registration of spermatogenesis in human testes: normal values and results in 335 hypogonadal males. Hormones 1, 2–25 (1970).

    CAS  PubMed  Google Scholar 

  27. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ge, S. X., Son, E. W. & Yao, R. Idep: an integrated web application for differential expression and pathway analysis of RNA-seq data. BMC Bioinforma. 19, 534 (2018).

    Article  CAS  Google Scholar 

  29. Ramaswamy, S. et al. The testicular transcriptome associated with spermatogonia differentiation initiated by gonadotrophin stimulation in the juvenile rhesus monkey (Macaca Mulatta). Hum. Reprod. 32, 2088–2100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao, Y. et al. Mirnas expression profiling of bovine (Bos Taurus) testes and effect of Bta-Mir-146b on proliferation and apoptosis in bovine male germline stem cells. Int J. Mol. Sci. 21, 3846 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Han, L. et al. Stereological analysis and transcriptome profiling of testicular injury induced by Di-(2-Ethylhexyl) phthalate in prepubertal rats. Ecotoxicol. Environ. Saf. 220, 112326 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Tichopad, A. et al. Design and optimization of reverse-transcription quantitative Pcr experiments. Clin. Chem. 55, 1816–1823 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Thomas, J. G., Olson, J. M., Tapscott, S. J. & Zhao, L. P. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res. 11, 1227–1236 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Giles, P. J. & Kipling, D. Normality of oligonucleotide microarray data and implications for parametric statistical analyses. Bioinformatics 19, 2254–2262 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Kanda, Y. Investigation of the freely available easy-to-use software ‘Ezr’ for medical statistics. Bone Marrow Transpl. 48, 452–458 (2013).

    Article  CAS  Google Scholar 

  36. Rifaioglu, M. M. et al. Protective effect of ebselen on experimental testicular torsion and detorsion injury. Andrologia 46, 1134–1140 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Lee, J. W. et al. Inhaled hydrogen gas therapy for prevention of testicular ischemia/reperfusion injury in rats. J. Pediatr. Surg. 47, 736–742 (2012).

    Article  PubMed  Google Scholar 

  38. Pérez, C. et al. Impaired expression and distribution of adherens and gap junction proteins in the seminiferous tubules of rats undergoing autoimmune orchitis. Int J. Androl. 34, e566–e577 (2011).

    Article  PubMed  Google Scholar 

  39. Johnson, K. J. Testicular histopathology associated with disruption of the sertoli cell cytoskeleton. Spermatogenesis 4, e979106 (2014).

    Article  PubMed  Google Scholar 

  40. Moffit, J. S., Bryant, B. H., Hall, S. J. & Boekelheide, K. Dose-dependent effects of sertoli cell toxicants 2,5-hexanedione, carbendazim, and mono-(2-ethylhexyl) phthalate in adult rat testis. Toxicol. Pathol. 35, 719–727 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Shimizu, S. et al. Ischemic preconditioning and post-conditioning to decrease testicular torsion-detorsion injury. J. Urol. 182, 1637–1643 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Ozturk, H., Ozturk, H., Terzi, E. H., Bugdayci, G. & Duran, A. Interleukin 10 reduces testicular damage in experimental testicular ischemia/reperfusion injury. Urology 83, 508.e501–506 (2014).

    Article  Google Scholar 

  43. Shokoohi, M. et al. Investigating the effects of onion juice on male fertility factors and pregnancy rate after testicular torsion/detorsion by intrauterine insemination method. Int J. Women’s Health Reprod. Sci. 6, 499–505 (2018).

    Article  CAS  Google Scholar 

  44. Shamsi-Gamchi, N., Razi, M. & Behfar, M. Cross-link between mitochondrial-dependent apoptosis and cell cycle checkpoint proteins after experimental torsion and detorsion in rats. Gene 795, 145793 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Shokoohi, M. et al. Protective effects of the hydroalcoholic extract of fumaria parviflora on testicular injury induced by torsion/detorsion in adult rats. Andrologia 50, e13047 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Koji, T., Hishikawa, Y., Ando, H., Nakanishi, Y. & Kobayashi, N. Expression of Fas and Fas ligand in normal and ischemia-reperfusion testes: involvement of the Fas system in the induction of germ cell apoptosis in the damaged mouse testis. Biol. Reprod. 64, 946–954 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Barghi, B. et al. Eugenol improves tissue damage and oxidative stress in adult female rats after ovarian torsion/detorsion. J. Obstet. Gynaecol. 41, 933–938 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jin, Z. & El-Deiry, W. S. Overview of cell death signaling pathways. Cancer Biol. Ther. 4, 139–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Li, H. & Yuan, J. Deciphering the pathways of life and death. Curr. Opin. Cell Biol. 11, 261–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Chinnaiyan, A. M. The apoptosome: heart and soul of the cell death machine. Neoplasia 1, 5–15 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marzo, I. et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027–2031 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Ambrosio, G. & Tritto, I. Reperfusion injury: experimental evidence and clinical implications. Am. Heart J. 138, S69–S75 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Maines, M. D. The heme oxygenase system: a regulator of second messenger gases. Annu Rev. Pharm. Toxicol. 37, 517–554 (1997).

    Article  CAS  Google Scholar 

  55. Lobo, V., Patil, A., Phatak, A. & Chandra, N. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn. Rev. 4, 118–126 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Feng, X. E. et al. Heme oxygenase-1, a key enzyme for the cytoprotective actions of halophenols by upregulating Nrf2 expression via activating Erk1/2 and Pi3k/Akt in Ea.Hy926 cells. Oxid. Med. Cell Longev. 2017, 7028478 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ganjiani, V., Ahmadi, N. & Raayat Jahromi, A. Protective effects of stevia rebaudiana aqueous extract on experimental unilateral testicular ischaemia/reperfusion injury in rats. Andrologia 52, e13469 (2020).

    Article  PubMed  Google Scholar 

  58. Khaje Roshanaee, M. et al. Protective effect of minocycline on Bax and Bcl-2 gene expression, histological damages and oxidative stress induced by ovarian torsion in adult rats. Int. J. Fertil. Steril. 16, 30–35 (2022).

    PubMed  PubMed Central  Google Scholar 

  59. Shokri, F., Shokoohi, M., Roudi Rasht Abadi, A. & Kalarestaghi, H. The ameliorative effect of Galega officinalis extract on histological damages, oxidative stress induced by torsion-detorsion in adult rats’ ovarian. Int. J. Women’s Health Reprod. Sci. 7, 119–123 (2019).

    Article  CAS  Google Scholar 

  60. Moghimian, M., Soltani, M., Abtahi, H. & Shokoohi, M. Effect of vitamin C on tissue damage and oxidative stress following tunica vaginalis flap coverage after testicular torsion. J. Pediatr. Surg. 52, 1651–1655 (2017).

    Article  PubMed  Google Scholar 

  61. Romeo, C. et al. Raxofelast, a hydrophilic vitamin E-like antioxidant, reduces testicular ischemia-reperfusion injury. Urol. Res. 32, 367–371 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Candelario-Jalil, E., Mhadu, N. H., Al-Dalain, S. M., Martínez, G. & León, O. S. Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci. Res. 41, 233–241 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Eddy, E. M. Role of heat shock protein Hsp70-2 in spermatogenesis. Rev. Reprod. 4, 23–30 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Liu, M. et al. Shcbp1l, a conserved protein in mammals, is predominantly expressed in male germ cells and maintains spindle stability during meiosis in testis. Mol. Hum. Reprod. 20, 463–475 (2014).

    Article  PubMed  Google Scholar 

  65. Greenbaum, M. P. et al. Tex14 is essential for intercellular bridges and fertility in male mice. Proc. Natl Acad. Sci. USA 103, 4982–4987 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yao, R. et al. Lack of acrosome formation in mice lacking a Golgi protein, Gopc. Proc. Natl Acad. Sci. USA 99, 11211–11216 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mykytyn, K. et al. Bardet–Biedl syndrome type 4 (Bbs4)-null mice implicate Bbs4 in flagella formation but not global cilia assembly. Proc. Natl Acad. Sci. USA 101, 8664–8669 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hagaman, J. R. et al. Angiotensin-converting enzyme and male fertility. Proc. Natl Acad. Sci. USA 95, 2552–2557 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hemmingsen, J. G. et al. Prenatal exposure to diesel exhaust particles and effect on the male reproductive system in mice. Toxicology 264, 61–68 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Pan, W. A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18, 546–554 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Expert technical assistance was provided by Machi Kawauchi and Kazuya Tanaka. We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

This work was supported by JSPS KAKENHI Grant Numbers JP16H06276 (AdAMS) and JP19K18355.

Author information

Authors and Affiliations

Authors

Contributions

Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data: H.K., R.S., S.S., M.U., T.M., T.F., A.T., and K.O. Drafting the article or revising it critically for important intellectual content: H.K., S.S., M.U., and R.S. Final approval of the version to be published: H.K., S.S., T.F., M.U., A.T., K.O., T.M., and R.S.

Corresponding author

Correspondence to Ryuichi Shimono.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katami, H., Suzuki, S., Fujii, T. et al. Genetic and histopathological analysis of spermatogenesis after short-term testicular torsion in rats. Pediatr Res 94, 1650–1658 (2023). https://doi.org/10.1038/s41390-023-02638-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02638-7

Search

Quick links