Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hyperglycemia and prematurity: a narrative review

Abstract

Hyperglycemia is commonly encountered in extremely preterm newborns and physiologically can be attributed to immaturity in several biochemical pathways related to glucose metabolism. Although hyperglycemia is associated with a variety of adverse outcomes frequently described in this population, evidence for causality is lacking. Variations in definitions and treatment approaches have further complicated the understanding and implications of hyperglycemia on the immediate and long-term effects in preterm newborns. In this review, we describe the relationship between hyperglycemia and organ development, outcomes, treatment options, and potential gaps in knowledge that need further research.

Impact

  • Hyperglycemia is common and less well described than hypoglycemia in extremely preterm newborns.

  • Hyperglycemia can be attributed to immaturity in several cellular pathways involved in glucose metabolism in this age group.

  • Hyperglycemia has been shown to be associated with a variety of adverse outcomes frequently described in this population; however, evidence for causality is lacking.

  • Variations in definitions and treatment approaches have complicated the understanding and the implications of hyperglycemia on the immediate and long-term effects outcomes.

  • This review describes the relationship between hyperglycemia and organ development, outcomes, treatment options, and potential gaps in knowledge that need further research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blanco, C. L., Baillargeon, J. G., Morrison, R. L. & Gong, A. K. Hyperglycemia in extremely low birth weight infants in a predominantly Hispanic population and related morbidities. J. Perinatol. 26, 737–741 (2006).

    CAS  PubMed  Google Scholar 

  2. Tottman, A. C., Alsweiler, J. M., Bloomfield, F. H., Pan, M. & Harding, J. E. Relationship between measures of neonatal glycemia, neonatal illness, and 2-year outcomes in very preterm infants. J. Pediatr. 188, 115–121 (2017).

    PubMed  Google Scholar 

  3. Zamir, I. et al. Hyperglycemia in extremely preterm infants-insulin treatment, mortality and nutrient intakes. J. Pediatr. 200, 104–110.e101 (2018).

    CAS  PubMed  Google Scholar 

  4. van der Lugt, N. M., Smits-Wintjens, V. E., van Zwieten, P. H. & Walther, F. J. Short and long term outcome of neonatal hyperglycemia in very preterm infants: a retrospective follow-up study. BMC Pediatr. 10, 52 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. Rath, C. P., Shivamallappa, M., Muthusamy, S., Rao, S. C. & Patole, S. Outcomes of very preterm infants with neonatal hyperglycaemia: a systematic review and meta-analysis. Arch. Dis. Child Fetal Neonatal Ed. 107, 269–280 (2022).

    PubMed  Google Scholar 

  6. Hays, S. P., Smith, E. O. & Sunehag, A. L. Hyperglycemia is a risk factor for early death and morbidity in extremely low birth-weight infants. Pediatrics 118, 1811–1818 (2006).

    PubMed  Google Scholar 

  7. Jagla, M., Szymonska, I., Starzec, K. & Kwinta, P. Preterm glycosuria - new data from a continuous glucose monitoring system. Neonatology 114, 87–92 (2018).

    CAS  PubMed  Google Scholar 

  8. Mesotten, D., Joosten, K., van Kempen, A. & Verbruggen, S., ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: carbohydrates. Clin. Nutr. 37, 2337–2343 (2018).

    CAS  PubMed  Google Scholar 

  9. Kao, L. S. et al. Hyperglycemia and morbidity and mortality in extremely low birth weight infants. J. Perinatol. 26, 730–736 (2006).

    CAS  PubMed  Google Scholar 

  10. Beardsall, K. et al. Prevalence and determinants of hyperglycemia in very low birth weight infants: cohort analyses of the nirture study. J. Pediatr. 157, 715–719.e711–e713 (2010).

    PubMed  Google Scholar 

  11. Alexandrou, G. et al. Early hyperglycemia is a risk factor for death and white matter reduction in preterm infants. Pediatrics 125, e584–e591 (2010).

    PubMed  Google Scholar 

  12. Szymonska, I., Jagla, M., Starzec, K., Hrnciar, K. & Kwinta, P. The incidence of hyperglycaemia in very low birth weight preterm newborns. results of a continuous glucose monitoring study-preliminary report. Dev. Period Med. 19, 305–312 (2015).

    PubMed  Google Scholar 

  13. Pertierra-Cortada, A., Ramon-Krauel, M., Iriondo-Sanz, M. & Iglesias-Platas, I. Instability of glucose values in very preterm babies at term postmenstrual age. J. Pediatr. 165, 1146–1153.e1142 (2014).

    CAS  PubMed  Google Scholar 

  14. Mola-Schenzle, E. et al. Clinically stable very low birthweight infants are at risk for recurrent tissue glucose fluctuations even after fully established enteral nutrition. Arch. Dis. Child Fetal Neonatal Ed. 100, F126–F131 (2015).

    CAS  PubMed  Google Scholar 

  15. Mizumoto, H., Kawai, M., Yamashita, S. & Hata, D. Intraday glucose fluctuation is common in preterm infants receiving intermittent tube feeding. Pediatr. Int. 58, 359–362 (2016).

    CAS  PubMed  Google Scholar 

  16. Sacks, D. B. et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care 34, e61–e99 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Sacks, D. B. et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin. Chem. 57, e1–e47 (2011).

    PubMed  Google Scholar 

  18. Overfield, C. V., Savory, J. & Heintges, M. G. Glycolysis: a re-evaluation of the effect on blood glucose. Clin. Chim. Acta 39, 35–40 (1972).

    CAS  PubMed  Google Scholar 

  19. Chan, A. Y., Swaminathan, R. & Cockram, C. S. Effectiveness of sodium fluoride as a preservative of glucose in blood. Clin. Chem. 35, 315–317 (1989).

    CAS  PubMed  Google Scholar 

  20. Kang, J. G., Park, C. Y., Ihm, S. H. & Park, S. W. A potential issue with screening prediabetes or diabetes using serum glucose: a delay in diagnosis. Diabetes Metab. J. 40, 414–417 (2016).

    PubMed  PubMed Central  Google Scholar 

  21. Kuwa, K., Nakayama, T., Hoshino, T. & Tominaga, M. Relationships of glucose concentrations in capillary whole blood, venous whole blood and venous plasma. Clin. Chim. Acta 307, 187–192 (2001).

    CAS  PubMed  Google Scholar 

  22. Larsson-Cohn, U. Differences between capillary and venous blood glucose during oral glucose tolerance tests. Scand. J. Clin. Lab Invest. 36, 805–808 (1976).

    CAS  PubMed  Google Scholar 

  23. Ramel, S. & Rao, R. Hyperglycemia in extremely preterm infants. Neoreviews 21, e89–e97 (2020).

    PubMed  Google Scholar 

  24. Le, H. T., Harris, N. S., Estilong, A. J., Olson, A. & Rice, M. J. Blood glucose measurement in the intensive care unit: what is the best method? J. Diabetes Sci. Technol. 7, 489–499 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Beardsall, K. et al. Validation of the continuous glucose monitoring sensor in preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 98, F136–F140 (2013).

    CAS  PubMed  Google Scholar 

  26. Harris, D. L., Weston, P. J., Gamble, G. D. & Harding, J. E. Glucose profiles in healthy term infants in the first 5 days: the Glucose in Well Babies (GLOW) study. J. Pediatr. 223, 34–41.e34 (2020).

    CAS  PubMed  Google Scholar 

  27. Flore, K. M. & Delanghe, J. R. Analytical interferences in point-of-care testing glucometers by icodextrin and its metabolites: an overview. Perit. Dial. Int. 29, 377–383 (2009).

    CAS  PubMed  Google Scholar 

  28. Tang, Z., Louie, R. F., Payes, M., Chang, K. C. & Kost, G. J. Oxygen effects on glucose measurements with a reference analyzer and three handheld meters. Diabetes Technol. Ther. 2, 349–362 (2000).

    CAS  PubMed  Google Scholar 

  29. Pitkin, A. D. & Rice, M. J. Challenges to glycemic measurement in the perioperative and critically ill patient: a review. J. Diabetes Sci. Technol. 3, 1270–1281 (2009).

    PubMed  PubMed Central  Google Scholar 

  30. Dickson, J. L., Chase, J. G., Pretty, C. G., Gunn, C. A. & Alsweiler, J. M. Hyperglycaemic preterm babies have sex differences in insulin secretion. Neonatology 108, 93–98 (2015).

    CAS  PubMed  Google Scholar 

  31. Mitanchez-Mokhtari, D. et al. Both relative insulin resistance and defective islet beta-cell processing of proinsulin are responsible for transient hyperglycemia in extremely preterm infants. Pediatrics 113, 537–541 (2004).

    PubMed  Google Scholar 

  32. Newsholme, E. A. & Dimitriadis, G. Integration of biochemical and physiologic effects of insulin on glucose metabolism. Exp. Clin. Endocrinol. Diabetes 109, S122–S134 (2001).

    CAS  PubMed  Google Scholar 

  33. Chacko, S. K., Ordonez, J., Sauer, P. J. & Sunehag, A. L. Gluconeogenesis is not regulated by either glucose or insulin in extremely low birth weight infants receiving total parenteral nutrition. J. Pediatr. 158, 891–896 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Santalucia, T. et al. Developmental regulation of Glut-1 (Erythroid/Hep G2) and Glut-4 (Muscle/Fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tissue. Endocrinology 130, 837–846 (1992).

    CAS  PubMed  Google Scholar 

  35. Lane, R. H., Crawford, S. E., Flozak, A. S. & Simmons, R. A. Localization and quantification of glucose transporters in liver of growth-retarded fetal and neonatal rats. Am. J. Physiol. 276, E135–E142 (1999).

    CAS  PubMed  Google Scholar 

  36. Salis, E. R., Reith, D. M., Wheeler, B. J., Broadbent, R. S. & Medlicott, N. J. Insulin resistance, glucagon-like peptide-1 and factors influencing glucose homeostasis in neonates. Arch. Dis. Child Fetal Neonatal Ed. 102, F162–F166 (2017).

    PubMed  Google Scholar 

  37. Hardy, A. B. et al. Zip4 mediated zinc influx stimulates insulin secretion in pancreatic beta cells. PLoS One 10, e0119136 (2015).

    PubMed  PubMed Central  Google Scholar 

  38. Ilouz, R., Kaidanovich, O., Gurwitz, D. & Eldar-Finkelman, H. Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem. Biophys. Res. Commun. 295, 102–106 (2002).

    CAS  PubMed  Google Scholar 

  39. Cameron, A. R., Anil, S., Sutherland, E., Harthill, J. & Rena, G. Zinc-dependent effects of small molecules on the insulin-sensitive transcription factor Foxo1a and gluconeogenic genes. Metallomics 2, 195–203 (2010).

    CAS  PubMed  Google Scholar 

  40. Collins, J. W. Jr et al. A controlled trial of insulin infusion and parenteral nutrition in extremely low birth weight infants with glucose intolerance. J. Pediatr. 118, 921–927 (1991).

    PubMed  Google Scholar 

  41. Louik, C., Mitchell, A. A., Epstein, M. F. & Shapiro, S. Risk factors for neonatal hyperglycemia associated with 10% dextrose infusion. Am. J. Dis. Child 139, 783–786 (1985).

    CAS  PubMed  Google Scholar 

  42. Phadke, D., Beller, J. P. & Tribble, C. The disparate effects of epinephrine and norepinephrine on hyperglycemia in cardiovascular surgery. Heart Surg. Forum 21, E522–E526 (2018).

    PubMed  Google Scholar 

  43. Hay, W. W. Jr & Rozance, P. J. Neonatal hyperglycemia-causes, treatments, and cautions. J. Pediatr. 200, 6–8 (2018).

    PubMed  Google Scholar 

  44. Eisenstein, A. B. & Strack, I. Amino acid stimulation of glucagon secretion by perifused islets of high-protein-fed rats. Diabetes 27, 370–376 (1978).

    CAS  PubMed  Google Scholar 

  45. Kuhara, T., Ikeda, S., Ohneda, A. & Sasaki, Y. Effects of intravenous infusion of 17 amino acids on the secretion of Gh, glucagon, and insulin in sheep. Am. J. Physiol. 260, E21–E26 (1991).

    CAS  PubMed  Google Scholar 

  46. Galsgaard, K. D. et al. Alanine, arginine, cysteine, and proline, but not glutamine, are substrates for, and acute mediators of, the liver-alpha-cell axis in female mice. Am. J. Physiol. Endocrinol. Metab. 318, E920–E929 (2020).

    CAS  PubMed  Google Scholar 

  47. Larsson, H. & Ahren, B. Glucose-dependent arginine stimulation test for characterization of islet function: studies on reproducibility and priming effect of arginine. Diabetologia 41, 772–777 (1998).

    CAS  PubMed  Google Scholar 

  48. Sunehag, A., Ewald, U. & Gustafsson, J. Extremely preterm infants (< 28 weeks) are capable of gluconeogenesis from glycerol on their first day of life. Pediatr. Res. 40, 553–557 (1996).

    CAS  PubMed  Google Scholar 

  49. Sunehag, A. L. The role of parenteral lipids in supporting gluconeogenesis in very premature infants. Pediatr. Res. 54, 480–486 (2003).

    CAS  PubMed  Google Scholar 

  50. Sunehag, A. L. Parenteral glycerol enhances gluconeogenesis in very premature infants. Pediatr. Res. 53, 635–641 (2003).

    CAS  PubMed  Google Scholar 

  51. Chacko, S. K. & Sunehag, A. L. Gluconeogenesis continues in premature infants receiving total parenteral nutrition. Arch. Dis. Child Fetal Neonatal Ed. 95, F413–F418 (2010).

    PubMed  Google Scholar 

  52. Salle, B. L. & Ruiton-Ugliengo, A. Effects of oral glucose and protein load on plasma glucagon and insulin concentrations in small for gestational age infants. Pediatr. Res. 11, 108–112 (1977).

    CAS  PubMed  Google Scholar 

  53. Cowett, R. M., Andersen, G. E., Maguire, C. A. & Oh, W. Ontogeny of glucose homeostasis in low birth weight infants. J. Pediatr. 112, 462–465 (1988).

    CAS  PubMed  Google Scholar 

  54. Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    CAS  PubMed  Google Scholar 

  55. Marik, P. E. & Raghavan, M. Stress-hyperglycemia, insulin and immunomodulation in sepsis. Intensive Care Med. 30, 748–756 (2004).

    PubMed  Google Scholar 

  56. Turina, M., Fry, D. E. & Polk, H. C. Jr Acute hyperglycemia and the innate immune system: clinical, cellular, and molecular aspects. Crit. Care Med. 33, 1624–1633 (2005).

    PubMed  Google Scholar 

  57. Liu, B. F. et al. Low phagocytic activity of resident peritoneal macrophages in diabetic mice: relevance to the formation of advanced glycation end products. Diabetes 48, 2074–2082 (1999).

    CAS  PubMed  Google Scholar 

  58. Delamaire, M. et al. Impaired leucocyte functions in diabetic patients. Diabet. Med. 14, 29–34 (1997).

    CAS  PubMed  Google Scholar 

  59. Wierusz-Wysocka, B., Wysocki, H., Wykretowicz, A. & Klimas, R. The influence of increasing glucose concentrations on selected functions of polymorphonuclear neutrophils. Acta Diabetol. Lat. 25, 283–288 (1988).

    CAS  PubMed  Google Scholar 

  60. Nielson, C. P. & Hindson, D. A. Inhibition of polymorphonuclear leukocyte respiratory burst by elevated glucose concentrations in vitro. Diabetes 38, 1031–1035 (1989).

    CAS  PubMed  Google Scholar 

  61. McMillan, D. E. Elevation of complement components in diabetes mellitus. Diabete Metab. 6, 265–270 (1980).

    CAS  PubMed  Google Scholar 

  62. Saiepour, D., Sehlin, J. & Oldenborg, P. A. Hyperglycemia-induced protein kinase C activation inhibits phagocytosis of C3b- and immunoglobulin G-opsonized yeast particles in normal human neutrophils. Exp. Diabesity Res. 4, 125–132 (2003).

    PubMed  PubMed Central  Google Scholar 

  63. Morigi, M. et al. Leukocyte-endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a Nf-Kb-dependent fashion. J. Clin. Invest. 101, 1905–1915 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Catalan, M. P., Reyero, A., Egido, J. & Ortiz, A. Acceleration of neutrophil apoptosis by glucose-containing peritoneal dialysis solutions: role of caspases. J. Am. Soc. Nephrol. 12, 2442–2449 (2001).

    CAS  PubMed  Google Scholar 

  65. Esposito, K. et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106, 2067–2072 (2002).

    CAS  PubMed  Google Scholar 

  66. Jeschke, M. G., Einspanier, R., Klein, D. & Jauch, K. W. Insulin attenuates the systemic inflammatory response to thermal trauma. Mol. Med. 8, 443–450 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Thaiss, C. A. et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 359, 1376–1383 (2018).

    CAS  PubMed  Google Scholar 

  68. Alsweiler, J. M., Harding, J. E. & Bloomfield, F. H. Neonatal hyperglycaemia increases mortality and morbidity in preterm lambs. Neonatology 103, 83–90 (2013).

    CAS  PubMed  Google Scholar 

  69. Blanco, C. L., McGill-Vargas, L. L., McCurnin, D. & Quinn, A. R. Hyperglycemia increases the risk of death in extremely preterm baboons. Pediatr. Res. 73, 337–343 (2013).

    CAS  PubMed  Google Scholar 

  70. Tayman, C. et al. Effects of hyperglycemia on the developing brain in newborns. Pediatr. Neurol. 51, 239–245 (2014).

    PubMed  Google Scholar 

  71. Callaway, D. A. et al. Prematurity disrupts glomeruli development, whereas prematurity and hyperglycemia lead to altered nephron maturation and increased oxidative stress in newborn baboons. Pediatr. Res. 83, 702–711 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Rao, R., Nashawaty, M., Fatima, S., Ennis, K. & Tkac, I. Neonatal hyperglycemia alters the neurochemical profile, dendritic arborization and gene expression in the developing rat hippocampus. NMR Biomed. 31, e3910 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. Au, S. C., Tang, S. M., Rong, S. S., Chen, L. J. & Yam, J. C. Association between hyperglycemia and retinopathy of prematurity: a systemic review and meta-analysis. Sci. Rep. 5, 9091 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lee, J. H. et al. Insulin, hyperglycemia, and severe retinopathy of prematurity in extremely low-birth-weight infants. Am. J. Perinatol. 33, 393–400 (2016).

    PubMed  Google Scholar 

  75. Conejo, R. & Lorenzo, M. Insulin signaling leading to proliferation, survival, and membrane ruffling in C2c12 myoblasts. J. Cell Physiol. 187, 96–108 (2001).

    CAS  PubMed  Google Scholar 

  76. Tacchini, L., Dansi, P., Matteucci, E. & Desiderio, M. A. Hepatocyte growth factor signalling stimulates hypoxia inducible factor-1 (HIF-1) activity in HEPG2 hepatoma cells. Carcinogenesis 22, 1363–1371 (2001).

    CAS  PubMed  Google Scholar 

  77. Joussen, A. M. et al. Suppression of diabetic retinopathy with angiopoietin-1. Am. J. Pathol. 160, 1683–1693 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chiarelli, F. et al. Vascular endothelial growth factor (VEGF) in children, adolescents and young adults with type 1 diabetes mellitus: relation to glycaemic control and microvascular complications. Diabet. Med. 17, 650–656 (2000).

    CAS  PubMed  Google Scholar 

  79. Kermorvant-Duchemin, E. et al. Neonatal hyperglycemia inhibits angiogenesis and induces inflammation and neuronal degeneration in the retina. PLoS One 8, e79545 (2013).

    PubMed  PubMed Central  Google Scholar 

  80. Poulaki, V. et al. Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF. J. Clin. Invest. 109, 805–815 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tamura, Y. The role of zinc homeostasis in the prevention of diabetes mellitus and cardiovascular diseases. J. Atheroscler. Thromb. 28, 1109–1122 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Brion, L. P., Heyne, R. & Lair, C. S. Role of zinc in neonatal growth and brain growth: review and scoping review. Pediatr. Res. 89, 1627–1640 (2021).

    CAS  PubMed  Google Scholar 

  83. Levenson, C. W. & Morris, D. Zinc and neurogenesis: making new neurons from development to adulthood. Adv. Nutr. 2, 96–100 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Al-Naama, N., Mackeh, R. & Kino, T. C2h2-type zinc finger proteins in brain development, neurodevelopmental, and other neuropsychiatric disorders: systematic literature-based analysis. Front. Neurol. 11, 32 (2020).

    PubMed  PubMed Central  Google Scholar 

  85. Barthel, A., Ostrakhovitch, E. A., Walter, P. L., Kampkotter, A. & Klotz, L. O. Stimulation of phosphoinositide 3-kinase/Akt signaling by copper and zinc ions: mechanisms and consequences. Arch. Biochem. Biophys. 463, 175–182 (2007).

    CAS  PubMed  Google Scholar 

  86. Wu, Y. et al. Zinc stimulates glucose consumption by modulating the insulin signaling pathway in L6 myotubes: essential roles of Akt-Glut4, Gsk3beta and Mtor-S6k1. J. Nutr. Biochem. 34, 126–135 (2016).

    PubMed  Google Scholar 

  87. Barman, S. & Srinivasan, K. Zinc supplementation alleviates hyperglycemia and associated metabolic abnormalities in streptozotocin-induced diabetic rats. Can. J. Physiol. Pharm. 94, 1356–1365 (2016).

    CAS  Google Scholar 

  88. Qi, Y. et al. Zinc supplementation alleviates lipid and glucose metabolic disorders induced by a high-fat diet. J. Agric. Food Chem. 68, 5189–5200 (2020).

    CAS  PubMed  Google Scholar 

  89. Simon, S. F. & Taylor, C. G. Dietary zinc supplementation attenuates hyperglycemia in Db/Db mice. Exp. Biol. Med. (Maywood) 226, 43–51 (2001).

    CAS  PubMed  Google Scholar 

  90. Fernandez-Cao, J. C. et al. Dietary zinc intake and whole blood zinc concentration in subjects with type 2 diabetes versus healthy subjects: a systematic review, meta-analysis and meta-regression. J. Trace Elem. Med. Biol. 49, 241–251 (2018).

    CAS  PubMed  Google Scholar 

  91. Jayawardena, R. et al. Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol. Metab. Syndr. 4, 13 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Capdor, J., Foster, M., Petocz, P. & Samman, S. Zinc and glycemic control: a meta-analysis of randomised placebo controlled supplementation trials in humans. J. Trace Elem. Med. Biol. 27, 137–142 (2013).

    CAS  PubMed  Google Scholar 

  93. de Sena, K. C. et al. Effects of zinc supplementation in patients with type 1 diabetes. Biol. Trace Elem. Res. 105, 1–9 (2005).

    PubMed  Google Scholar 

  94. Cunningham, J. J., Fu, A., Mearkle, P. L. & Brown, R. G. Hyperzincuria in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supplementation. Metabolism 43, 1558–1562 (1994).

    CAS  PubMed  Google Scholar 

  95. Brion, L. P. et al. Adjustable feedings plus accurate serial length measurements decrease discharge weight-length disproportion in very preterm infants: quality improvement project. J. Perinatol. 39, 1131–1139 (2019).

    PubMed  Google Scholar 

  96. Brion, L. P. et al. Correction to: Adjustable feedings plus accurate serial length measurements decrease discharge weight-length disproportion in very preterm infants: quality improvement project. J. Perinatol. 39, 1694 (2019).

    PubMed  Google Scholar 

  97. Steculorum, S. M. & Bouret, S. G. Maternal diabetes compromises the organization of hypothalamic feeding circuits and impairs leptin sensitivity in offspring. Endocrinology 152, 4171–4179 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Fu, J., Tay, S. S., Ling, E. A. & Dheen, S. T. High glucose alters the expression of genes involved in proliferation and cell-fate specification of embryonic neural stem cells. Diabetologia 49, 1027–1038 (2006).

    CAS  PubMed  Google Scholar 

  99. Plagemann, A. et al. Alterations of hypothalamic catecholamines in the newborn offspring of gestational diabetic mother rats. Brain Res. Dev. Brain Res. 109, 201–209 (1998).

    CAS  PubMed  Google Scholar 

  100. Razi, E. M., Ghafari, S. & Golalipour, M. J. Effect of gestational diabetes on purkinje and granule cells distribution of the rat cerebellum in 21 and 28 days of postnatal life. Basic Clin. Neurosci. 6, 6–13 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. Satrom, K. M. et al. Neonatal hyperglycemia induces Cxcl10/Cxcr3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats. J. Neuroinflammation 15, 82 (2018).

    PubMed  PubMed Central  Google Scholar 

  102. Chandna, A. R. et al. Chronic maternal hyperglycemia induced during mid-pregnancy in rats increases rage expression, augments hippocampal excitability, and alters behavior of the offspring. Neuroscience 303, 241–260 (2015).

    CAS  PubMed  Google Scholar 

  103. Ornoy, A. Growth and neurodevelopmental outcome of children born to mothers with pregestational and gestational diabetes. Pediatr. Endocrinol. Rev. 3, 104–113 (2005).

    PubMed  Google Scholar 

  104. He, X. J., Dai, R. X., Tian, C. Q. & Hu, C. L. Neurodevelopmental outcome at 1 year in offspring of women with gestational diabetes mellitus. Gynecol. Endocrinol. 37, 88–92 (2021).

    CAS  PubMed  Google Scholar 

  105. Ornoy, A., Wolf, A., Ratzon, N., Greenbaum, C. & Dulitzky, M. Neurodevelopmental outcome at early school age of children born to mothers with gestational diabetes. Arch. Dis. Child Fetal Neonatal Ed. 81, F10–F14 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Nelson, C. A., Wewerka, S. S., Borscheid, A. J., Deregnier, R. A. & Georgieff, M. K. Electrophysiologic evidence of impaired cross-modal recognition memory in 8-month-old infants of diabetic mothers. J. Pediatr. 142, 575–582 (2003).

    PubMed  Google Scholar 

  107. Bolanos, L., Matute, E., Ramirez-Duenas Mde, L. & Zarabozo, D. Neuropsychological impairment in school-aged children born to mothers with gestational diabetes. J. Child Neurol. 30, 1616–1624 (2015).

    PubMed  Google Scholar 

  108. Fraser, A., Nelson, S. M., Macdonald-Wallis, C. & Lawlor, D. A. Associations of existing diabetes, gestational diabetes, and glycosuria with offspring IQ and educational attainment: the Avon Longitudinal Study of Parents and Children. Exp. Diabetes Res. 2012, 963735 (2012).

    PubMed  PubMed Central  Google Scholar 

  109. Nomura, Y. et al. Exposure to gestational diabetes mellitus and low socioeconomic status: effects on neurocognitive development and risk of attention-deficit/hyperactivity disorder in offspring. Arch. Pediatr. Adolesc. Med. 166, 337–343 (2012).

    PubMed  PubMed Central  Google Scholar 

  110. Li, M. et al. The association of maternal obesity and diabetes with autism and other developmental disabilities. Pediatrics 137, e20152206 (2016).

    PubMed  PubMed Central  Google Scholar 

  111. Kong, L., Norstedt, G., Schalling, M., Gissler, M. & Lavebratt, C. The risk of offspring psychiatric disorders in the setting of maternal obesity and diabetes. Pediatrics 142, e20180776 (2018).

    PubMed  Google Scholar 

  112. Nold, J. L. & Georgieff, M. K. Infants of diabetic mothers. Pediatr. Clin. North Am. 51, 619–637, viii (2004).

    PubMed  Google Scholar 

  113. Georgieff, M. K. The effect of maternal diabetes during pregnancy on the neurodevelopment of offspring. Minn. Med. 89, 44–47 (2006).

    PubMed  Google Scholar 

  114. Tunay, Z. O., Ozdemir, O., Acar, D. E., Oztuna, D. & Uras, N. Maternal diabetes as an independent risk factor for retinopathy of prematurity in infants with birth weight of 1500 g or more. Am. J. Ophthalmol. 168, 201–206 (2016).

    PubMed  Google Scholar 

  115. Opara, C. N. et al. Maternal diabetes mellitus as an independent risk factor for clinically significant retinopathy of prematurity severity in neonates less than 1500g. PLoS One 15, e0236639 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bental, Y. et al. Impact of maternal diabetes mellitus on mortality and morbidity of preterm infants (24-33 weeks’ gestation). Pediatrics 128, e848–e855 (2011).

    PubMed  Google Scholar 

  117. Rehan, V. K., Moddemann, D. & Casiro, O. G. Outcome of very-low-birth-weight (< 1,500 grams) infants born to mothers with diabetes. Clin. Pediatr. (Philos.) 41, 481–491 (2002).

    Google Scholar 

  118. Soghier, L. M. & Brion, L. P. Multivariate analysis of hyperglycemia in extremely low birth weight infants. J. Perinatol. 26, 723–725 (2006).

    CAS  PubMed  Google Scholar 

  119. Heimann, K. et al. Are recurrent hyperglycemic episodes and median blood glucose level a prognostic factor for increased morbidity and mortality in premature infants </=1500 g? J. Perinat. Med. 35, 245–248 (2007).

    PubMed  Google Scholar 

  120. Stensvold, H. J. et al. Early enhanced parenteral nutrition, hyperglycemia, and death among extremely low-birth-weight infants. JAMA Pediatr. 169, 1003–1010 (2015).

    PubMed  Google Scholar 

  121. Auerbach, A. et al. Long duration of hyperglycemia in the first 96 h of life is associated with severe intraventricular hemorrhage in preterm infants. J. Pediatr. 163, 388–393 (2013).

    CAS  PubMed  Google Scholar 

  122. Dweck, H. S. & Cassady, G. Glucose intolerance in infants of very low birth weight. I. Incidence of hyperglycemia in infants of birth weights 1,100 grams or less. Pediatrics 53, 189–195 (1974).

    CAS  PubMed  Google Scholar 

  123. Hey, E. Hyperglycaemia and the very preterm baby. Semin. Fetal Neonatal Med. 10, 377–387 (2005).

    PubMed  Google Scholar 

  124. Beardsall, K. et al. Real-time continuous glucose monitoring in preterm infants (REACT): an international, open-label, randomised controlled trial. Lancet Child Adolesc. Health 5, 265–273 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hall, N. J., Peters, M., Eaton, S. & Pierro, A. Hyperglycemia is associated with increased morbidity and mortality rates in neonates with necrotizing enterocolitis. J. Pediatr. Surg. 39, 898–901 (2004).

    CAS  PubMed  Google Scholar 

  126. Rowen, J. L., Atkins, J. T., Levy, M. L., Baer, S. C. & Baker, C. J. Invasive fungal dermatitis in the < or = 1000-gram neonate. Pediatrics 95, 682–687 (1995).

    CAS  PubMed  Google Scholar 

  127. Chavez-Valdez, R., McGowan, J., Cannon, E. & Lehmann, C. U. Contribution of early glycemic status in the development of severe retinopathy of prematurity in a cohort of ELBW infants. J. Perinatol. 31, 749–756 (2011).

    CAS  PubMed  Google Scholar 

  128. Almeida, A. C. et al. Correlation between hyperglycemia and glycated albumin with retinopathy of prematurity. Sci. Rep. 11, 22321 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Garg, R., Agthe, A. G., Donohue, P. K. & Lehmann, C. U. Hyperglycemia and retinopathy of prematurity in very low birth weight infants. J. Perinatol. 23, 186–194 (2003).

    PubMed  Google Scholar 

  130. Ertl, T., Gyarmati, J., Gaal, V. & Szabo, I. Relationship between hyperglycemia and retinopathy of prematurity in very low birth weight infants. Biol. Neonate 89, 56–59 (2006).

    PubMed  Google Scholar 

  131. Bozdag, S. et al. Serum fructosamine and retinopathy of prematurity. Indian J. Pediatr. 78, 1503–1509 (2011).

    PubMed  Google Scholar 

  132. Kaempf, J. W. et al. Hyperglycemia, insulin and slower growth velocity may increase the risk of retinopathy of prematurity. J. Perinatol. 31, 251–257 (2011).

    CAS  PubMed  Google Scholar 

  133. Mohamed, S., Murray, J. C., Dagle, J. M. & Colaizy, T. Hyperglycemia as a risk factor for the development of retinopathy of prematurity. BMC Pediatr. 13, 78 (2013).

    PubMed  PubMed Central  Google Scholar 

  134. Mohsen, L. et al. A prospective study on hyperglycemia and retinopathy of prematurity. J. Perinatol. 34, 453–457 (2014).

    CAS  PubMed  Google Scholar 

  135. Nicolaeva, G. V., Sidorenko, E. I. & Iosifovna, A. L. Influence of the blood glucose level on the development of retinopathy of prematurity in extremely premature children. Arq. Bras. Oftalmol. 78, 232–235 (2015).

    PubMed  Google Scholar 

  136. Scheurer, J. M., Gray, H. L., Demerath, E. W., Rao, R. & Ramel, S. E. Diminished growth and lower adiposity in hyperglycemic very low birth weight neonates at 4 months corrected age. J. Perinatol. 36, 145–150 (2016).

    CAS  PubMed  Google Scholar 

  137. Ramel, S. E. et al. Neonatal hyperglycemia and diminished long-term growth in very low birth weight preterm infants. J. Perinatol. 33, 882–886 (2013).

    CAS  PubMed  Google Scholar 

  138. Tottman, A. C. et al. Long-term outcomes of hyperglycemic preterm infants randomized to tight glycemic control. J. Pediatr. 193, 68–75.e61 (2018).

    PubMed  Google Scholar 

  139. Zamir, I. et al. Postnatal nutritional intakes and hyperglycemia as determinants of blood pressure at 6.5 years of age in children born extremely preterm. Pediatr. Res. 86, 115–121 (2019).

    PubMed  PubMed Central  Google Scholar 

  140. Paulsen, M. E. et al. Long-term outcomes after early neonatal hyperglycemia in VLBW infants: a systematic review. Neonatology 118, 509–521 (2021).

    CAS  PubMed  Google Scholar 

  141. Heald, A., Abdel-Latif, M. E. & Kent, A. L. Insulin infusion for hyperglycaemia in very preterm infants appears safe with no effect on morbidity, mortality and long-term neurodevelopmental outcome. J. Matern. Fetal Neonatal Med. 25, 2415–2418 (2012).

    CAS  PubMed  Google Scholar 

  142. Gonzalez Villamizar, J. D., Haapala, J. L., Scheurer, J. M., Rao, R. & Ramel, S. E. Relationships between early nutrition, illness, and later outcomes among infants born preterm with hyperglycemia. J. Pediatr. 223, 29–33.e22 (2020).

    CAS  PubMed  Google Scholar 

  143. Alsweiler, J. M., Kuschel, C. A. & Bloomfield, F. H. Survey of the management of neonatal hyperglycaemia in Australasia. J. Paediatr. Child Health 43, 632–635 (2007).

    PubMed  Google Scholar 

  144. Van Kempen, A. A. et al. Adaptation of glucose production and gluconeogenesis to diminishing glucose infusion in preterm infants at varying gestational ages. Pediatr. Res. 53, 628–634 (2003).

    PubMed  Google Scholar 

  145. Sauer, P. J., Van Aerde, J. E., Pencharz, P. B., Smith, J. M. & Swyer, P. R. Glucose oxidation rates in newborn infants measured with indirect calorimetry and [U-13c]Glucose. Clin. Sci. (Lond.) 70, 587–593 (1986).

    CAS  PubMed  Google Scholar 

  146. Forsyth, J. S. & Crighton, A. Low birthweight infants and total parenteral nutrition immediately after birth. I. Energy expenditure and respiratory quotient of ventilated and non-ventilated infants. Arch. Dis. Child Fetal Neonatal Ed. 73, F4–F7 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Osborn, D. A., Schindler, T., Jones, L. J., Sinn, J. K. & Bolisetty, S. Higher versus lower amino acid intake in parenteral nutrition for newborn infants. Cochrane Database Syst. Rev. 3, CD005949 (2018).

    PubMed  Google Scholar 

  148. Burattini, I. et al. Targeting 2.5 versus 4 g/kg/day of amino acids for extremely low birth weight infants: a randomized clinical trial. J. Pediatr. 163, 1278–1282.e1271 (2013).

    CAS  PubMed  Google Scholar 

  149. Burgess, L., Morgan, C., Mayes, K. & Tan, M. Plasma arginine levels and blood glucose control in very preterm infants receiving 2 different parenteral nutrition regimens. JPEN J. Parenter. Enter. Nutr. 38, 243–253 (2014).

    Google Scholar 

  150. Tottman, A. C. et al. Relationships between early nutrition and blood glucose concentrations in very preterm infants. J. Pediatr. Gastroenterol. Nutr. 66, 960–966 (2018).

    CAS  PubMed  Google Scholar 

  151. Vlaardingerbroek, H. et al. Safety and efficacy of early parenteral lipid and high-dose amino acid administration to very low birth weight infants. J. Pediatr. 163, 638–644.e631–e635 (2013).

    CAS  PubMed  Google Scholar 

  152. Kwok, T. C., Dorling, J. & Gale, C. Early enteral feeding in preterm infants. Semin. Perinatol. 43, 151159 (2019).

    PubMed  Google Scholar 

  153. Koletzko, B. et al. Scientific basis and practical application of nutritional care for preterm infants. World Rev. Nutr. Diet. 122, XIII–XIV (2021).

    PubMed  Google Scholar 

  154. Meetze, W., Bowsher, R., Compton, J. & Moorehead, H. Hyperglycemia in extremely- low-birth-weight infants. Biol. Neonate 74, 214–221 (1998).

    CAS  PubMed  Google Scholar 

  155. Ogilvy-Stuart, A. L. & Beardsall, K. Management of hyperglycaemia in the preterm infant. Arch. Dis. Child Fetal Neonatal Ed. 95, F126–F131 (2010).

    CAS  PubMed  Google Scholar 

  156. Alsweiler, J. M., Harding, J. E. & Bloomfield, F. H. Tight glycemic control with insulin in hyperglycemic preterm babies: a randomized controlled trial. Pediatrics 129, 639–647 (2012).

    PubMed  Google Scholar 

  157. Thabet, F., Bourgeois, J., Guy, B. & Putet, G. Continuous insulin infusion in hyperglycaemic very-low-birth-weight infants receiving parenteral nutrition. Clin. Nutr. 22, 545–547 (2003).

    CAS  PubMed  Google Scholar 

  158. Finch, C. W. Review of trace mineral requirements for preterm infants: what are the current recommendations for clinical practice? Nutr. Clin. Pract. 30, 44–58 (2015).

    PubMed  Google Scholar 

  159. Sinclair, J. C., Bottino, M. & Cowett, R. M. Interventions for prevention of neonatal hyperglycemia in very low birth weight infants. Cochrane Database Syst. Rev. 10, CD007615 (2011).

  160. Falorni, A., Massi-Benedetti, F., Gallo, G. & Trabalza, N. Blood glucose, serum insulin and glucagon response to arginine in premature infants. Biol. Neonate 27, 271–278 (1975).

    CAS  PubMed  Google Scholar 

  161. King, K. C., Adam, P. A., Yamaguchi, K. & Schwartz, R. Insulin response to arginine in normal newborn infants and infants of diabetic mothers. Diabetes 23, 816–820 (1974).

    CAS  PubMed  Google Scholar 

  162. Roth, E. Nonnutritive effects of glutamine. J. Nutr. 138, 2025S–2031S (2008).

    CAS  PubMed  Google Scholar 

  163. Becker, R. M. et al. Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J. Pediatr. 137, 785–793 (2000).

    CAS  PubMed  Google Scholar 

  164. Beardsall, K. et al. Early insulin therapy in very-low-birth-weight infants. N. Engl. J. Med. 359, 1873–1884 (2008).

    CAS  PubMed  Google Scholar 

  165. Klonoff, D. C. et al. Continuous glucose monitoring: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 96, 2968–2979 (2011).

    CAS  PubMed  Google Scholar 

  166. Harris, D. L., Weston, P. J., Signal, M., Chase, J. G. & Harding, J. E. Dextrose gel for neonatal hypoglycaemia (the Sugar Babies Study): a randomised, double-blind, placebo-controlled trial. Lancet 382, 2077–2083 (2013).

    CAS  PubMed  Google Scholar 

  167. Facchinetti, A., Sparacino, G. & Cobelli, C. Modeling the error of continuous glucose monitoring sensor data: critical aspects discussed through simulation studies. J. Diabetes Sci. Technol. 4, 4–14 (2010).

    PubMed  PubMed Central  Google Scholar 

  168. McKinlay, C. J. D. et al. Continuous glucose monitoring in neonates: a review. Matern. Health Neonatol. Perinatol. 3, 18 (2017).

    PubMed  PubMed Central  Google Scholar 

  169. Thomson, L. et al. Targeting glucose control in preterm infants: pilot studies of continuous glucose monitoring. Arch. Dis. Child Fetal Neonatal Ed. 104, F353–F359 (2019).

    PubMed  Google Scholar 

  170. Galderisi, A. et al. Continuous glucose monitoring in very preterm infants: a randomized controlled trial. Pediatrics 140, e20171162 (2017).

    PubMed  Google Scholar 

  171. Beardsall, K., Thomson, L., Elleri, D., Dunger, D. B. & Hovorka, R. Feasibility of automated insulin delivery guided by continuous glucose monitoring in preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 105, 279–284 (2020).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

D.A. contributed to the concept of the paper, wrote the initial and revised drafts of this manuscript, and approved the final manuscript as submitted. M.A.J. and L.P.B. critically reviewed the manuscript and approved the final version.

Corresponding author

Correspondence to Dimitrios Angelis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelis, D., Jaleel, M.A. & Brion, L.P. Hyperglycemia and prematurity: a narrative review. Pediatr Res 94, 892–903 (2023). https://doi.org/10.1038/s41390-023-02628-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02628-9

Search

Quick links