Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Acute kidney injury decreases pulmonary vascular growth and alveolarization in neonatal rat pups

Abstract

Background

Acute kidney injury (AKI) is common in sick neonates and associated with poor pulmonary outcomes, however, the mechanisms responsible remain unknown. We present two novel neonatal rodent models of AKI to investigate the pulmonary effects of AKI.

Methods

In rat pups, AKI was induced surgically via bilateral ischemia-reperfusion injury (bIRI) or pharmacologically using aristolochic acid (AA). AKI was confirmed with plasma blood urea nitrogen and creatinine measurements and kidney injury molecule-1 staining on renal immunohistochemistry. Lung morphometrics were quantified with radial alveolar count and mean linear intercept, and angiogenesis investigated by pulmonary vessel density (PVD) and vascular endothelial growth factor (VEGF) protein expression. For the surgical model, bIRI, sham, and non-surgical pups were compared. For the pharmacologic model, AA pups were compared to vehicle controls.

Results

AKI occurred in bIRI and AA pups, and they demonstrated decreased alveolarization, PVD, and VEGF protein expression compared controls. Sham pups did not experience AKI, however, demonstrated decreased alveolarization, PVD, and VEGF protein expression compared to controls.

Conclusion

Pharmacologic AKI and surgery in neonatal rat pups, with or without AKI, decreased alveolarization and angiogenesis, producing a bronchopulmonary dysplasia phenotype. These models provide a framework for elucidating the relationship between AKI and adverse pulmonary outcomes.

Impact

  • There are no published neonatal rodent models investigating the pulmonary effects after neonatal acute kidney injury, despite known clinical associations.

  • We present two novel neonatal rodent models of acute kidney injury to study the impact of acute kidney injury on the developing lung.

  • We demonstrate the pulmonary effects of both ischemia-reperfusion injury and nephrotoxin-induced AKI on the developing lung, with decreased alveolarization and angiogenesis, mimicking the lung phenotype of bronchopulmonary dysplasia.

  • Neonatal rodent models of acute kidney injury provide opportunities to study mechanisms of kidney-lung crosstalk and novel therapeutics in the context of acute kidney injury in a premature infant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental Timeline.
Fig. 2: Acute kidney injury measurements.
Fig. 3: Lung morphometric measurements.
Fig. 4: Lung angiogenic measurements.
Fig. 5: Sex Differences Among Pulmonary Outcomes.
Fig. 6: Lung weights and body weights.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hoste, E. A. J. et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 41, 1411–1423 (2015).

    Article  PubMed  Google Scholar 

  2. Kaddourah, A., Basu, R. K., Bagshaw, S. M. & Goldstein, S. L., AWARE Investigators. Epidemiology of acute kidney injury in critically Ill children and young adults. N. Engl. J. Med. 376, 11–20 (2017).

    Article  PubMed  Google Scholar 

  3. Jetton, J. G. et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc. Health 1, 184–194 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Harer, M. W., Charlton, J. R., Tipple, T. E. & Reidy, K. J. Preterm birth and neonatal acute kidney injury: implications on adolescent and adult outcomes. J. Perinatol. 40, 1286–1295 (2020).

    Article  PubMed  Google Scholar 

  5. Charlton, J. R., Baldelomar, E. J., Hyatt, D. M. & Bennett, K. M. Nephron number and its determinants: a 2020 update. Pediatr. Nephrol. 36, 797–807 (2021).

    Article  PubMed  Google Scholar 

  6. White, L. E. & Hassoun, H. T. Inflammatory mechanisms of organ crosstalk during ischemic acute kidney injury. Int. J. Nephrol. 2012, 1–8 (2012).

    Article  Google Scholar 

  7. Faubel, S. Pulmonary complications after acute kidney injury. Adv. Chronic Kidney Dis. 15, 284–296 (2008).

    Article  PubMed  Google Scholar 

  8. Basu, R. K. & Wheeler, D. S. Kidney-lung cross-talk and acute kidney injury. Pediatr. Nephrol. 28, 2239–2248 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Faubel, S. & Edelstein, C. L. Mechanisms and mediators of lung injury after acute kidney injury. Nat. Rev. Nephrol. 12, 48–60 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Alge, J. et al. Two to tango: kidney-lung interaction in acute kidney injury and acute respiratory distress syndrome. Front Pediatr. 9, 744110 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Askenazi, D. et al. Acute kidney injury is associated with bronchopulmonary dysplasia/mortality in premature infants. Pediatr. Nephrol. 30, 1511–1518 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Starr, M. C. et al. Acute kidney injury is associated with poor lung outcomes in infants born ≥ 32 weeks of gestational age. Am. J. Perinatol. 37, 231–240 (2020).

    Article  PubMed  Google Scholar 

  13. Starr, M. C. et al. Acute kidney injury and bronchopulmonary dysplasia in premature neonates born less than 32 weeks’ gestation. Am. J. Perinatol. 37, 341–348 (2020).

    Article  PubMed  Google Scholar 

  14. Northway, W. H., Rosan, R. C. & Porter, D. Y. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. N. Engl. J. Med. 276, 357–368 (1967).

    Article  PubMed  Google Scholar 

  15. Alvira, C. M. & Morty, R. E. Can we understand the pathobiology of bronchopulmonary dysplasia? J. Pediatr. 190, 27–37 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jobe, A. H. & Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 163, 1723–1729 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Kunig, A. M. et al. Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia. Am. J. Physiol. Lung Cell Mol. Physiol. 289, L529–L535 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Le Cras, T. D., Markham, N. E., Tuder, R. M., Voelkel, N. F. & Abman, S. H. Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am. J. Physiol. Lung Cell Mol. Physiol. 283, L555–L562 (2002).

    Article  PubMed  Google Scholar 

  19. Sharfuddin, A. A. & Molitoris, B. A. Pathophysiology of ischemic acute kidney injury. Nat. Rev. Nephrol. 7, 189–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Salerno, S. N. et al. Association between nephrotoxic drug combinations and acute kidney injury in the neonatal intensive care unit. J. Pediatr. 228, 213–219 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Han, J., Xian, Z., Zhang, Y., Liu, J. & Liang, A. Systematic overview of aristolochic acids: nephrotoxicity, carcinogenicity, and underlying mechanisms. Front. Pharmacol. 10, 648 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cosyns, J. Aristolochic acid and ‘Chinese herbs nephropathy’: a review of the evidence to date. Drug Saf. 26, 33–48 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Fu, Y. et al. Rodent models of AKI-CKD transition. Am. J. Physiol. Ren. Physiol. 315, F1098–F1106 (2018).

    Article  CAS  Google Scholar 

  24. Novitskaya, T. et al. A PTBA small molecule enhances recovery and reduces postinjury fibrosis after aristolochic acid-induced kidney injury. Am. J. Physiol. Ren. Physiol. 306, F496–F504 (2014).

    Article  CAS  Google Scholar 

  25. Gien, J., Tseng, N., Seedorf, G., Kuhn, K. & Abman, S. H. Endothelin-1-Rho kinase interactions impair lung structure and cause pulmonary hypertension after bleomycin exposure in neonatal rat pups. Am. J. Physiol. Lung Cell Mol. Physiol. 311, L1090–L1100 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ichimura, T., Hung, C. C., Yang, S. A., Stevens, J. L. & Bonventre, J. V. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am. J. Physiol. Ren. Physiol. 286, F552–F563 (2004).

    Article  CAS  Google Scholar 

  27. Cooney, T. P. & Thurlbeck, W. M. The radial alveolar count method of Emery and Mithal: a reappraisal 1—postnatal lung growth. Thorax 37, 572–579 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cooney, T. P. & Thurlbeck, W. M. The radial alveolar count method of Emery and Mithal: a reappraisal 2—intrauterine and early postnatal lung growth. Thorax 37, 580–583 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Emery, J. L. & Mithal, A. The number of alveoli in the terminal respiratory unit of man during late intrauterine life and childhood. Arch. Dis. Child. 35, 544–547 (1960).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thurlbeck, W. M. Internal surface area and other measurements in emphysema. Thorax 22, 483–496 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goldstein, S. L. et al. Pediatric ADQI collaborative. consensus-based recommendations on priority activities to address acute kidney injury in children: a modified delphi consensus statement. JAMA Netw. Open. 5, e2229442 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Adachi, S., Zelenin, S., Matsuo, Y. & Holtback, U. Cellular response to renal hypoxia is different in adolescent and infant rats. Pediatr. Res. 55, 485–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez, M. M. et al. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr. Dev. Pathol. 7, 17–25 (2004).

    Article  PubMed  Google Scholar 

  34. Bagby, S. P. Developmental hypertension, nephrogenesis, and mother’s milk: programming the neonate. J. Am. Soc. Nephrol. 18, 1626–1629 (2007).

    Article  PubMed  Google Scholar 

  35. Schreuder, M. F., Nyengaard, J. R., Remmers, F., van Wijk, J. A. E. & Delemarre-van de Waal, H. A. Postnatal food restriction in the rat as a model for a low nephron endowment. Am. J. Physiol. 29, F1104–F1107 (2006).

    Google Scholar 

  36. Abdel-Hakeem, A. K. et al. Mechanisms of impaired nephrogenesis with fetal growth restriction: altered renal transcription and growth factor expression. Am. J. Obstet. Gynecol. 199, e1–e7 (2008).

    Article  Google Scholar 

  37. O’Reilly, M. & Thebaud, B. Animal models of bronchopulmonary dysplasia. The term rat models. Am. J. Physiol. Lung Cell Mol. Physiol. 307, L948–L958 (2014).

    Article  PubMed  Google Scholar 

  38. Massaro, D. & Massaro, G. D. Dexamethasone accelerates postnatal alveolar wall thinning and alters wall composition. Am. J. Physiol. 251, R218–R224 (1986).

    CAS  PubMed  Google Scholar 

  39. Jakkula, M. et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L600–L607 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Sun, X. Normal and abnormal structural development of the lung. In Fetal and Neonatal Physiology (Polin, R. A., Abman, S. H., Rowitch, D. H., & Benitz, W. E. eds) 585–599 (Elsevier, Philadelphia, 2022).

  41. Plotnikov, E. Y. et al. The role of oxidative stress in acute renal injury of newborn rats exposed to hypoxia and endotoxin. FEBS J. 284, 3069–3078 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Soni, H. & Adebiyi, A. Early septic insult in neonatal pigs increases serum and urinary soluble Fas ligand and decreases kidney function without inducing significant renal apoptosis. Ren. Fail. 39, 83–91 (2017).

    Article  PubMed  Google Scholar 

  43. Charlton, J. R. et al. Nephron loss detected by MRI following neonatal acute kidney injury in rabbits. Pediatr. Res. 87, 1185–1192 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Hoke, T. S. et al. Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J. Am. Soc. Nephrol. 18, 155–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Brown, C. N. et al. Surgical procedures suppress autophagic flux in kidney. Cell Death Dis. 12, 248 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoffman, J. et al. Sham surgery and inter-individual heterogeneity are major determinants of monocyte subset kinetics in a mouse model of myocardial infarction. PLoS One 9, e98456 (2014).

    Article  Google Scholar 

  47. Clyman, R., Cassady, G., Kirklin, J. K., Collins, M. & Philips, J. B. The role of patent ductus arteriosus ligation in bronchopulmonary dysplasia: reexamining a randomized controlled trial. J. Pediatr. 154, 873–876 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kabra, N. S. et al. Neurosensory impairment after surgical closure of patent ductus arteriosus in extremely low birth weight infants: results from the Trial of Indomethacin Prophylaxis in Preterms. J. Pediatr. 150, 229–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Garg, P. M. et al. Clinical correlates of Moderate to Severe Bronchopulmonary Dysplasia in Preterm Infants following Surgical Necrotizing Enterocolitis. Am. J. Perinatol. https://doi.org/10.1055/a-1904-9194 (2022).

  50. Hutchens, M. P., Dunlap, J., Hurn, P. D. & Jarnberg, P. O. Renal ischemia: does sex matter? Anesth. Analg. 107, 239–249 (2008).

    Article  PubMed  Google Scholar 

  51. Soranno, D. E. et al. Female and male mice have differential longterm cardiorenal outcomes following a matched degree of ischemia-reperfusion acute kidney injury. Sci. Rep. 12, 643 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tambunting, F., Beharry, K. D. A., Waltzman, J. & Modanlou, H. D. Impaired lung vascular endothelial growth factor in extremely premature baboons developing bronchopulmonary dysplasia/chronic lung disease. J. Investig. Med. 23, 253–262 (2005).

    Article  Google Scholar 

  53. Maniscalco, W. M., Watkins, R. H., D’Angio, C. T. & Ryan, R. M. Hyperoxic injury decreases alveolar epithelial cell expression of vascular endothelial growth factor (VEGF) in neonatal rabbit lung. Am. J. Respir. Cell Mol. Biol. 16, 557–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Starr, M. C. et al. Premature infants born <28 weeks with acute kidney injury have increased bronchopulmonary dysplasia rates. Pediatr. Res. https://doi.org/10.1038/s41390-023-02514-4 (2023).

  55. Ahuja, N. et al. Circulating IL-6 mediates lung injury via CXCL1 production after acute kidney injury in mice. Am. J. Physiol. Ren. Physiol. 303, F864–F872 (2012).

    Article  CAS  Google Scholar 

  56. Kramer, A. A. et al. Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int. 55, 2362–2367 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Deng, J., Hu, X., Yuen, P. S. T. & Star, R. A. Alpha-melanocyte-stimulating hormone inhibits lung injury after renal ischemia/reperfusion. Am. J. Respir. Crit. Care Med. 169, 749–756 (2004).

    Article  PubMed  Google Scholar 

  58. Lui, K. D. et al. Predictive and pathogenetic value of plasma biomarkers for acute kidney injury in patients with acute lung injury. Crit. Care Med. 35, 2755–2761 (2007).

    Google Scholar 

  59. Lui, K. D. et al. Serum interleukin-6 and interleukin-8 are early biomarkers of acute kidney injury and predict prolonged mechanical ventilation in children undergoing cardiac surgery: a case-control study. Crit. Care. 13, R104 (2009).

    Article  Google Scholar 

  60. Kielar, M. L. et al. Maladaptive role of IL-6 in ischemic acute renal failure. J. Am. Soc. Nephrol. 16, 3315–3325 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Klein, C. L. et al. Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy. Kidney Int. 74, 901–909 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Hukriede, N. A. et al. Experimental models of acute kidney injury for translational research. Nat. Rev. Nephrol. 18, 277–293 (2022).

    Article  PubMed  Google Scholar 

  63. Arigliani, M., Spinelli, A. M., Liguoro, I. & Cogo, P. Nutrition and lung growth. Nutrients 10, 919 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ehrenkranz, R. A. et al. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 117, 1253–1261 (2006).

    Article  PubMed  Google Scholar 

  65. Bell, E. F. et al. Mortality, in-hospital morbidity, care practices, and 2-year outcomes for extremely preterm infants in the US, 2013-2018. JAMA 327, 248–263 (2022).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.M.L. provided substantial contributions to conception and design, acquisition of data, and analysis and interpretation of data; drafted the article; provided final approval of the version to be published. G.S. and J.G. provided substantial contributions to conception and design, acquisition of data, and analysis and interpretation of data; revised the article critically for important intellectual content; provided final approval of the version to be published. D.E.S., J.R.M., and S.G.F. provided substantial contributions to conception and design; revised the article critically for important intellectual content; provided final approval of the version to be published. A.H. provided substantial contributions to acquisition of data; revised the article critically for important intellectual content; provided final approval of the version to be published. S.H.A. revised the article critically for important intellectual content; provided final approval of the version to be published.

Corresponding author

Correspondence to Brianna M. Liberio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liberio, B.M., Seedorf, G., Soranno, D.E. et al. Acute kidney injury decreases pulmonary vascular growth and alveolarization in neonatal rat pups. Pediatr Res 94, 1308–1316 (2023). https://doi.org/10.1038/s41390-023-02625-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02625-y

This article is cited by

Search

Quick links