Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The influence of nutrition on white matter development in preterm infants: a scoping review

Abstract

White matter (WM) injury is the most common type of brain injury in preterm infants and is associated with impaired neurodevelopmental outcome (NDO). Currently, there are no treatments for WM injury, but optimal nutrition during early preterm life may support WM development. The main aim of this scoping review was to assess the influence of early postnatal nutrition on WM development in preterm infants. Searches were performed in PubMed, EMBASE, and COCHRANE on September 2022. Inclusion criteria were assessment of preterm infants, nutritional intake before 1 month corrected age, and WM outcome. Methods were congruent with the PRISMA-ScR checklist. Thirty-two articles were included. Negative associations were found between longer parenteral feeding duration and WM development, although likely confounded by illness. Positive associations between macronutrient, energy, and human milk intake and WM development were common, especially when fed enterally. Results on fatty acid and glutamine supplementation remained inconclusive. Significant associations were most often detected at the microstructural level using diffusion magnetic resonance imaging. Optimizing postnatal nutrition can positively influence WM development and subsequent NDO in preterm infants, but more controlled intervention studies using quantitative neuroimaging are needed.

Impact

  • White matter brain injury is common in preterm infants and associated with impaired neurodevelopmental outcome.

  • Optimizing postnatal nutrition can positively influence white matter development and subsequent neurodevelopmental outcome in preterm infants.

  • More studies are needed, using quantitative neuroimaging techniques and interventional designs controlling for confounders, to define optimal nutritional intakes in preterm infants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Ortinau, C. & Neil, J. The neuroanatomy of prematurity: normal brain development and the impact of preterm birth. Clin. Anat. 28, 168–183 (2015).

    Article  PubMed  Google Scholar 

  2. Pascal, A. et al. Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: a meta-analytic review. Dev. Med. Child Neurol. 60, 342–355 (2018).

    Article  PubMed  Google Scholar 

  3. Wilson, S. et al. Development of human white matter pathways in utero over the second and third trimester. Proc. Natl Acad. Sci. USA 118, 1–7 (2021).

    Article  Google Scholar 

  4. van Tilborg, E. et al. Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury. Glia 66, 221–238 (2018).

    Article  PubMed  Google Scholar 

  5. Back, S. A. White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol 134, 331–349 (2017).

  6. Volpe, J. J. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 8, 110–124 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cayam-Rand, D. et al. Predicting developmental outcomes in preterm infants: a simple white matter injury imaging rule. Neurology 93, E1231–E1240 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Back, S. A. & Miller, S. P. Brain injury in premature neonates: a primary cerebral dysmaturation disorder? Ann. Neurol. 75, 469–486 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Elitt, C. M. & Rosenberg, P. A. The challenge of understanding cerebral white matter injury in the premature infant. Neuroscience 276, 216–238 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Cusick, S. E. & Georgieff, M. K. The role of nutrition in brain development: the golden opportunity of the “First 1000 Days”. J. Pediatr. 175, 16–21 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Keunen, K., Van Elburg, R. M., Van Bel, F. & Benders, M. J. N. L. Impact of nutrition on brain development and its neuroprotective implications following preterm birth. Pediatr. Res. 77, 148–155 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Volpe, J. J. Dysmaturation of premature brain: importance, cellular mechanisms, and potential interventions. Pediatr. Neurol. 95, 42–66 (2019).

    Article  PubMed  Google Scholar 

  13. Fink, N. H., Collins, C. T., Gibson, R. A., Makrides, M. & Penttila, I. A. Targeting inflammation in the preterm infant: the role of the omega-3 fatty acid docosahexaenoic acid. J. Nutr. Intermed. Metab. 5, 55–60 (2016).

    Article  Google Scholar 

  14. Garofalo, R. Cytokines in human milk. J. Pediatr. 156, S36–S40 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Eyles, D., Burne, T. & Mcgrath, J. Vitamin D in fetal brain development. Semin. Cell Dev. Biol. 22, 629–636 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K. & Librowski, T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology 25, 11–24 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Georgieff, M. K. Nutrition and the developing brain: nutrient priorities and measurement. Am. J. Clin. Nutr. 85, 614–620 (2007).

    Google Scholar 

  18. Strømmen, K. et al. Enhanced nutrient supply to very low birth weight infants is associated with improved white matter maturation and head growth. Neonatology 107, 68–75 (2015).

    Article  PubMed  Google Scholar 

  19. Schneider, J. et al. Nutrient intake in the first two weeks of life and brain growth in preterm neonates. Pediatrics 141, e20172169 (2018).

  20. Coviello, C. et al. Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatr. Res. 83, 102–110 (2018).

    Article  PubMed  Google Scholar 

  21. Mudd, A. T. & Dilger, R. N. Early-life nutrition and neurodevelopment: use of the piglet as a translational model. Adv. Nutr. 8, 92–104 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chan, S. H. T., Johnson, M. J., Leaf, A. A. & Vollmer, B. Nutrition and neurodevelopmental outcomes in preterm infants: a systematic review. Acta Paediatr. 105, 587–599 (2016).

    Article  PubMed  Google Scholar 

  23. Belfort, M. B. & Ehrenkranz, R. A. Neurodevelopmental outcomes and nutritional strategies in very low birth weight infants. Semin. Fetal Neonatal Med. 22, 42–48 (2017).

    Article  PubMed  Google Scholar 

  24. Ottolini, K. M., Andescavage, N., Keller, S. & Limperopoulos, C. Nutrition and the developing brain: the road to optimizing early neurodevelopment: a systematic review. Pediat. Res. 87, 194–201 (2020)

  25. Hortensius, L. M., Van Elburg, R. M., Nijboer, C. H., Benders, M. J. N. L. & De Theije, C. G. M. Postnatal nutrition to improve brain development in the preterm infant: A systematic review from bench to bedside. Front. Physiol. 10, 1–18 (2019).

    Article  Google Scholar 

  26. Peters, M.D.J. et al. Chapter 11: Scoping Reviews (2020 version). In: Aromataris E, Munn Z Editors. JBI Manual for Evidence Synthesis, JBI, 2020

  27. Tricco, A. C. et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann. Intern. Med. 169, 467–473 (2018).

    Article  PubMed  Google Scholar 

  28. Mueen Ahmed, K. K. & Al Dhubaib, B. E. Zotero: a bibliographic assistant to researcher. J. Pharm. Pharmacother. 2, 303–305 (2011).

    Article  Google Scholar 

  29. Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 5, 1–10 (2016).

    Article  Google Scholar 

  30. Brouwer, M. J. et al. Preterm brain injury on term-equivalent age MRI in relation to perinatal factors and neurodevelopmental outcome at two years. PLoS One 12, 1–13 (2017).

    Article  Google Scholar 

  31. Barnett, M. L. et al. Exploring the multiple-hit hypothesis of preterm white matter damage using diffusion MRI. Neuroimage Clin. 17, 596–606 (2018).

    Article  PubMed  Google Scholar 

  32. Parikh, N. A., Lasky, R. E., Kennedy, K. A., McDavid, G. & Tyson, J. E. Perinatal factors and regional brain volume abnormalities at term in a cohort of extremely low birth weight infants. PLoS One 8, e62804 (2013).

  33. Parikh, N. A., He, L., Li, H., Priyanka Illapani, V. S. & Klebanoff, M. A. Antecedents of objectively diagnosed diffuse white matter abnormality in very preterm infants. Pediatr. Neurol. 106, 56–62 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Parikh, N. A. et al. Perinatal risk and protective factors in the development of diffuse white matter abnormality on term-equivalent age magnetic resonance imaging in infants born very preterm. J. Pediatr. 233, 58–65.e3 (2021).

    Article  PubMed  Google Scholar 

  35. Rogers, CE., Smyser, T., Smyser, CD., Shimony, J., Inder, TE. & Neil, JJ. Regional white matter development in very preterm infants: perinatal predictors and early developmental outcomes. Physiol. Behav. 176, 100–106 (2016).

    Google Scholar 

  36. Blesa, M. et al. Early breast milk exposure modifies brain connectivity in preterm infants. Neuroimage 184, 431–439 (2019).

    Article  PubMed  Google Scholar 

  37. Belfort, M. B. et al. Breast milk feeding, brain development, and neurocognitive outcomes: a 7-year longitudinal study in infants born at less than 30 weeks’ gestation. J. Pediatr. 177, 133–139.e1 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Isaacs, E. B. et al. Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatr. Res. 67, 357–362 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bell, K. A. et al. Associations of macronutrient intake determined by point-of-care human milk analysis with brain development among very preterm infants. Children (Basel) 9, 969 (2022).

  40. Ottolini, K. M., Andescavage, N., Kapse, K., Jacobs, M. & Limperopoulos, C. Improved brain growth and microstructural development in breast milk–fed very low birth weight premature infants. Acta Paediatr. 109, 1580–1587 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pogribna, U. et al. Perinatal clinical antecedents of white matter microstructural abnormalities on diffusion tensor imaging in extremely preterm infants. PLoS One 8, e72974 (2013).

  42. Sato, J. et al. Early nutrition and white matter microstructure in children born very low birth weight. Brain Commun. 3, 1–12 (2021).

    Article  Google Scholar 

  43. Keller, T. et al. Intranasal breast milk for premature infants with severe intraventricular hemorrhage—an observation. Eur. J. Pediatr. 178, 199–206. https://doi.org/10.1007/s00431-018-3279-7 (2019).

  44. Terrin, G. et al. Early protein intake influences neonatal brain measurements in preterms: an observational study. Front. Neurol. 11, 885 (2020).

  45. Boscarino, G. et al. Effects of early energy intake on neonatal cerebral growth of preterm newborn: an observational study. Sci. Rep. 11, 1–7 (2021).

    Article  Google Scholar 

  46. Ottolini, K. M. et al. Early lipid intake improves cerebellar growth in very low-birth-weight preterm infants. J. Parenter. Enter. Nutr. 45, 587–595 (2021).

    Article  CAS  Google Scholar 

  47. Power, V. A. et al. Nutrition, growth, brain volume, and neurodevelopment in very preterm children. J. Pediatr. 215, 50–55.e3 (2019).

    Article  PubMed  Google Scholar 

  48. Hansen-Pupp, I. et al. Postnatal decrease in circulating insulin-like growth factor-I and low brain volumes in very preterm infants. J. Clin. Endocrinol. Metab. 96, 1129–1135 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. van Beek, P. E. et al. Increase in brain volumes after implementation of a nutrition regimen in infants born extremely preterm. J. Pediatr. 223, 57–63.e5 (2020).

    Article  PubMed  Google Scholar 

  50. Rozé, J. C. et al. Association between early amino acid intake and full-scale IQ at age 5 years among infants born at less than 30 weeks’ gestation. JAMA Netw. Open 4, e2135452. https://doi.org/10.1001/jamanetworkopen.2021.35452 (2021).

  51. Hortensius, L. M. et al. Nutritional intake, white matter integrity, and neurodevelopment in extremely preterm born infants. Nutrients 13, 1–14 (2021).

    Article  Google Scholar 

  52. Beauport, L. et al. Impact of early nutritional intake on preterm brain: a magnetic resonance imaging study. J. Pediatr. 181, 29–36.e1 (2017).

    Article  PubMed  Google Scholar 

  53. Tan, M., Abernethy, L. & Cooke, R. Improving head growth in preterm infants – a randomised controlled trial II: MRI and developmental outcomes in the first year. Arch. Dis. Child Fetal Neonatal Ed. 93, 342–346 (2008).

    Article  Google Scholar 

  54. Isaacs, E. B. et al. The effect of early human diet on caudate volumes and IQ. Pediatr. Res. 63, 308–314 (2008).

  55. Van Wezel-Meijler, G. et al. Dietary supplementation of long-chain polyunsaturated fatty acids in preterm infants: effects on cerebral maturation. Acta Paediatr. 91, 942–950 (2002).

    Article  PubMed  Google Scholar 

  56. Almaas, A. N. et al. Long-chain polyunsaturated fatty acids and cognition in VLBW infants at 8 years: An RCT. Pediatrics 135, 972–980 (2015).

    Article  PubMed  Google Scholar 

  57. Almaas, A. N. et al. Diffusion tensor imaging and behavior in premature infants at 8 years of age, a randomized controlled trial with long-chain polyunsaturated fatty acids. Early Hum. Dev. 95, 41–46 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. De Kieviet, J. F. et al. Effects of glutamine on brain development in very preterm children at school age. Pediatrics 130, e1121–e1127 (2012).

  59. Ehrenkranz, R. A. et al. Early nutrition mediates the influence of severity of illness on extremely LBW infants. Pediatr. Res. 69, 522–529 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moltu, S. J. et al. Nutritional management of the critically ill neonate: a position paper of the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 73, 274–289 (2021).

    PubMed  Google Scholar 

  61. Stensvold, H. J. et al. Early enhanced parenteral nutrition, hyperglycemia, and death among extremely low-birth-weight infants. JAMA Pediatr. 169, 1003–1010 (2015).

    Article  PubMed  Google Scholar 

  62. Nilsson, A. K. et al. Serum choline in extremely preterm infants declines with increasing parenteral nutrition. Eur. J. Nutr. 60, 1081–1089 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Asztalos, E. V., Church, P. T., Riley, P., Fajardo, C. & Shah, P. S. Neonatal factors associated with a good neurodevelopmental outcome in very preterm infants. Am. J. Perinatol. 34, 388–396 (2017).

    PubMed  Google Scholar 

  64. Wojnar, M. M., Fan, J., Li, Y. H. & Lang, C. H. Endotoxin-induced changes in IGF-I differ in rats provided enteral vs. parenteral nutrition. Am. J. Physiol. 276, E455–E464 (1999).

  65. Marcobal, A. et al. Consumption of human milk oligosaccharides by gut-related microbes. J. Agric. Food Chem. 58, 5334–5340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ayechu-Muruzabal, V. et al. Diversity of human milk oligosaccharides and effects on early life immune development. Front. Pediatr. 6, 1–9 (2018).

    Article  Google Scholar 

  67. Kotey, F. O. & Spatz, D. L. White matter injury in preterm infants: could human milk play a role in its prevention? Adv. Neonatal Care 13, 89–94 (2013).

    Article  PubMed  Google Scholar 

  68. Quigley, M., Embleton, N. D. & McGuire, W. Formula versus maternal breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst. Rev. 8, CD002972 (2019).

  69. Chetta, K. E., Schulz, E. V. & Wagner, C. L. Outcomes improved with human milk intake in preterm and full-term infants. Semin. Perinatol. 45, 151384 (2021).

    Article  PubMed  Google Scholar 

  70. Dueñas-Espín, I. et al. Breastfeeding education, early skin-to-skin contact and other strong determinants of exclusive breastfeeding in an urban population: a prospective study. BMJ Open 11, 1–8 (2021).

    Article  Google Scholar 

  71. Walfisch, A., Sermer, C., Cressman, A. & Koren, G. Breast milk and cognitive development-the role of confounders: a systematic review. BMJ Open 3, e003259 (2013).

  72. Yumani, D. F. J., Calor, A. K. & van Weissenbruch, M. M. The course of IGF-1 levels and nutrient intake in extremely and very preterm infants during hospitalisation. Nutrients 12, 1–13 (2020).

    Article  Google Scholar 

  73. Okuma, C. et al. Microstructural brain and multivoxel spectroscopy in very low birth weight infants related to insulin-like growth factor concentration and early growth. Horm. Res. Paediatr. 79, 197–207 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Hay, W. W. Aggressive nutrition of the preterm infant. Curr. Pediatr. Rep. 1. https://doi.org/10.1007/s40124-013-0026-4 (2013).

  75. Cormack, B. E., Harding, J. E., Miller, S. P. & Bloomfield, F. H. The influence of early nutrition on brain growth and neurodevelopment in extremely preterm babies: a narrative review. Nutrients 11, 2029 (2019).

  76. Balakrishnan, M. et al. Growth and neurodevelopmental outcomes of early high‐dose parenteral amino acid intake in very low birth weight infants: a randomized controlled trial. JPEN J Parenter Enteral Nutr. 42, 597–606 (2017)

  77. Lapillonne, A. & Moltu, S. J. Long-chain polyunsaturated fatty acids and clinical outcomes of preterm infants. Ann. Nutr. Metab. 69, 36–44 (2016).

    Article  Google Scholar 

  78. Sakamoto, T., Cansev, M. & Wurtman, R. J. Oral supplementation with docosahexaenoic acid and uridine-5′-monophosphate increases dendritic spine density in adult gerbil hippocampus. Brain Res. 1182, 50–59 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Farquharson, J., Cockburn, F., Patrick, W. A., Jamieson, E. C. & Logan, R. W. Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet 340, 810–813 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. Makrides, M., Neumann, M. A., Byard, R. W., Simmer, K. & Gibson, R. A. Fatty acid composition of brain, retina, and erythrocytes in breast-and formula-fed infants. Am. J. Clin. Nutr. 60, 189–194 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Lapillonne, A., Groh-Wargo, S., Lozano Gonzalez, C. H. & Uauy, R. Lipid needs of preterm infants: updated recommendations. J. Pediatr. 162, S37–S47 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Hortensius, L. M. et al. Serum docosahexaenoic acid levels are associated with brain volumes in extremely preterm born infants. Pediatr. Res. 90, 1177–1185. https://doi.org/10.1038/s41390-021-01645-w (2021).

  83. Tam, E. W. Y. et al. Early postnatal docosahexaenoic acid levels and improved preterm brain development. Pediatr. Res. 79, 723–730 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fang, P. C. et al. The effect of supplementation of docosahexaenoic acid and arachidonic acid on visual acuity and neurodevelopment in larger preterm infants. Chang Gung Med. J. 28, 708–715 (2005).

    PubMed  Google Scholar 

  85. Clandinin, M. T. et al. Growth and development of preterm infants fed infant formulas containing docosahexaenoic acid and arachidonic acid. J. Pediatr. 146, 461–468 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Makrides, M. et al. Neurodevelopmental outcomes of preterm infants fed high-dose docosahexaenoic acid – a randomized controlled. Trial 301, 175–182 (2015).

    Google Scholar 

  87. Sugasini, D., Yalagala, P. C. R., Goggin, A., Leon M. Tai, P. & Subbaiah, P. V. Enrichment of brain docosahexaenoic acid (DHA) is highly dependent upon the molecular carrier of dietary DHA: lysophosphatidylcholine is more efficient than either phosphatidylcholine or triacylglycerol. J. Nutr. Biochem. 74, 108231. https://doi.org/10.1159/000444169.Carotid (2019).

  88. Klevebro, S., Juul, S. E. & Wood, T. R. A more comprehensive approach to the neuroprotective potential of long-chain polyunsaturated fatty acids in preterm infants is needed—should we consider maternal diet and the n-6:n-3 fatty acid ratio? Front. Pediatr. 7, 533 (2020).

  89. Alshweki, A. et al. Effects of different arachidonic acid supplementation on psychomotor development in very preterm infants; a randomized controlled trial. Nutr. J. 14, 101 (2015).

  90. Kamino, D. et al. Postnatal polyunsaturated fatty acids associated with larger preterm brain tissue volumes and better outcomes. Pediatr. Res. 83, 93–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Van Den Berg, A., Van Elburg, R. M., Westerbeek, E. A. M., Twisk, J. W. R. & Fetter, W. P. F. Glutamine-enriched enteral nutrition in very-low-birth-weight infants and effects on feeding tolerance and infectious morbidity: a randomized controlled trial. Am. J. Clin. Nutr. 81, 1397–1404 (2005).

    Article  PubMed  Google Scholar 

  92. Mok, E. & Hankard, R. Glutamine supplementation in sick children: is it beneficial? J. Nutr. Metab. 2011, 617597 (2011).

  93. De Kieviet, J. F. et al. Glutamine effects on brain growth in very preterm children in the first year of life. Clin. Nutr. 33, 69–74 (2014).

    Article  PubMed  Google Scholar 

  94. van Zwol, A. et al. Neurodevelopmental outcomes of very low‐birth‐weight infants after enteral glutamine. Acta Paediatr. 97, 562–7 (2008)

  95. De Kieviet, J. F. et al. Effects of neonatal enteral glutamine supplementation on cognitive, motor and behavioural outcomes in very preterm and/or very low birth weight children at school age. Br. J. Nutr. 108, 2215–2220 (2012).

    Article  PubMed  Google Scholar 

  96. Moe-Byrne, T., Brown, J. V. E. & Mcguire, W. Glutamine supplementation to prevent morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2016, CD001457 (2016).

  97. Rochow, N. et al. Individualized target fortification of breast milk with protein, carbohydrates, and fat for preterm infants: a double-blind randomized controlled trial. Clin. Nutr. 40, 54–63 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Fusch, S. et al. Individualized target fortification of breast milk: optimizing macronutrient content using different fortifiers and approaches. Front. Nutr. 8, 652641 (2021).

  99. Cormack, B. E., Embleton, N. D., Van Goudoever, J. B., Hay, W. W. & Bloomfield, F. H. Comparing apples with apples: it is time for standardized reporting of neonatal nutrition and growth studies. Pediatr. Res. 79, 810–820 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Hauser, J., Sultan, S., Rytz, A., Steiner, P. & Schneider, N. A blend containing docosahexaenoic acid, arachidonic acid, vitamin B12, vitamin B9, iron and sphingomyelin promotes myelination in an in vitro model. Nutr. Neurosci. 23, 931–945 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Holguin, S., Martinez, J., Chow, C. & Wurtman, R. Dietary uridine enhances the improvement in learning and memory produced by administering DHA to gerbils. FASEB J. 22, 3938–3946 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schneider, N. et al. A nutrient formulation affects developmental myelination in term infants: a randomized clinical trial. Front. Nutr. 9, 1–12 (2022).

    Article  Google Scholar 

  103. Andrew, M. J. et al. Neurodevelopmental outcome of nutritional intervention in newborn infants at risk of neurodevelopmental impairment: the Dolphin neonatal double-blind randomized controlled trial. Dev. Med. Child Neurol. 60, 897–905 (2018).

    Article  PubMed  Google Scholar 

  104. Andrew, M. J. et al. Nutritional intervention and neurodevelopmental outcome in infants with suspected cerebral palsy: the Dolphin infant double-blind randomized controlled trial. Dev. Med. Child Neurol. 60, 906–913 (2018).

    Article  PubMed  Google Scholar 

  105. Hortensius, L. M. et al. NutriBrain: protocol for a randomised, double-blind, controlled trial to evaluate the effects of a nutritional product on brain integrity in preterm infants. BMC Pediatr. 21, 1–10 (2021).

    Article  Google Scholar 

  106. He, Y., Zhang, Y., Li, F. & Shi, Y. White matter injury in preterm infants: pathogenesis and potential therapy from the aspect of the gut–brain axis. Front. Neurosci. 16, 849372 (2022).

  107. Kramer, M. S. et al. Breastfeeding and child cognitive development: new evidence from a large randomized. Trial 65, 578–584 (2008).

    Google Scholar 

  108. Sullivan, G. et al. Breast milk exposure is associated with cortical maturation in preterm infants Gemma. Ann. Neurol. 93, 591–603. https://doi.org/10.1002/ana.26559 (2023).

  109. Tottman, A. C., Oliver, C. J., Alsweiler, J. M. & Cormack, B. E. Do preterm girls need different nutrition to preterm boys? Sex-specific nutrition for the preterm infant. Pediatr. Res. 89, 313–317 (2021).

    Article  PubMed  Google Scholar 

  110. Reiss, A. L. et al. Sex differences in cerebral volumes of 8-year-olds born preterm. J. Pediatr. 145, 242–249 (2004).

    Article  PubMed  Google Scholar 

  111. Schneider, N. & Garcia-Rodenas, C. L. Early nutritional interventions for brain and cognitive development in preterm infants: a review of the literature. Nutrients 9, 187 (2017).

  112. Munn, Z. et al. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 18, 1–7 (2018).

    Article  Google Scholar 

  113. Hopewell, S., Loudon, K., Clarke, M. J., Oxman, A. D. & Dickersin, K. Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database Syst. Rev. 2009, MR000006. https://doi.org/10.1002/14651858.MR000006.pub3 (2009).

Download references

Acknowledgements

We thank the following staff at the University Library Utrecht for their help in drafting the initial search strategy and assistance in updating the initial search: Paulien Wiersma and Dr Marie-Louise S. Goudeau.

Funding

E.J. and M.J.N.L.B. are funded by the Athena Grant “Utrecht Center for Food and Health – research program specialized nutrition,” subsidy from the Dutch Ministry of Economic Affairs, Utrecht Province and the municipality of Utrecht. E.J., N.E. and M.J.N.L.B. are also funded by a Health-Holland-TKI grant, LSHM19087.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

E.J., M.F.W., P.E.v.B., J.D., R.M.v.E., and N.E.v.d.A. made substantial contributions to the conception and design, acquisition of data, or analysis and interpretation of data. E.J., P.E.v.B., J.D., R.M.v.E., L.M.H., E.W.Y.T., M.S.d.P., A.L., C.G.M.d.T., and N.E.v.d.A. contributed to drafting the article or revising it critically for important intellectual content. E.J., M.F.W., P.E.v.B., J.D., R.M.v.E., L.M.H., E.W.Y.T., M.S.d.P., A.L., C.G.M.d.T., M.J.N.L.B., N.E.v.d.A., S.J.M., G.Z., M.J.J. C.F., and S.I. contributed to final approval of the version to be published.

Corresponding author

Correspondence to Niek E. van der Aa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janson, E., Willemsen, M.F., Van Beek, P.E. et al. The influence of nutrition on white matter development in preterm infants: a scoping review. Pediatr Res (2023). https://doi.org/10.1038/s41390-023-02622-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-023-02622-1

Search

Quick links