Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Impaired myocardial deformation persists at 2 years in offspring of mothers with diabetes mellitus

Abstract

Background

A diabetic intrauterine environment has been proposed as a potential etiological mechanism for in utero programming of cardiac disease, and is associated with impaired fetal cardiac function. We aimed to assess cardiac function in offspring of mothers with diabetes mellitus (ODM) and determine whether fetal cardiac abnormalities persist during follow-up.

Methods

Longitudinal observational study to evaluate and compare myocardial function in 40 ODM to age-matched control offspring (CO). Myocardial deformation was measured using speckle-tracking echocardiography (STE).

Results

Significant differences were detected in global longitudinal strain (−20.9 ± 3.1 vs. −23.6 ± 2.2%; p = 0.001), global circumferential strain (−24.4 ± 3.9 vs. −26.9 ± 2.7%; p = 0.017), average radial strain (29.0 ± 9.8 vs. 37.1 ± 7.2%; p = 0.003), average longitudinal systolic strain rate (−1.24 ± 0.25/s vs. −1.47 ± 0.30/s; p = 0.011) and average circumferential systolic strain rate (−1.56 ± 0.37/s vs. −1.84 ± 0.37/s; p = 0.013) in comparison to CO up to 2 years of follow-up. Minimal differences were observed within ODM over the 2-year period.

Conclusion

Impaired cardiac function in ODM persists during 2 years follow-up. Functional cardiac assessment might therefore be useful to detect these unfavorable changes, independent of screening for congenital heart disease or hypertrophic cardiomyopathy in this population.

IMPACT

  • We demonstrate persistence of subclinical myocardial deformation abnormalities in offspring of mothers with diabetes mellitus from fetal life to early childhood years.

  • These results extend the cellular observations in basic and translational research of developmental programming into the clinical realm.

  • Persistence of subclinical myocardial deformation abnormalities may shed light on the known incidence of early cardiovascular disease in offspring of mother with diabetes.

  • Cardiac myocardial strain assessment can be useful to detect these abnormalities, independent of screening for congenital heart disease or hypertrophic cardiomyopathy in this population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Parameters of myocardial deformation in ODM compared to age-matched CO.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chen, L., Magliano, D. J. & Zimmet, P. Z. The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives. Nat. Rev. Endocrinol. 8, 228–236 (2011).

    PubMed  Google Scholar 

  2. Zhou, B. et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 387, 1513–1530 (2016).

    Google Scholar 

  3. Lawrence, J. M. et al. Trends in prevalence of Type 1 and Type 2 diabetes in children and adolescents in the US, 2001-2017. JAMA 326, 717–727 (2021).

    PubMed  PubMed Central  Google Scholar 

  4. Sun, H. et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pr. 183, 109119 (2022).

    Google Scholar 

  5. Lee, A. J., Hiscock, R. J., Wein, P., Walker, S. P. & Permezel, M. Gestational diabetes mellitus: clinical predictors and long-term risk of developing type 2 diabetes: a retrospective cohort study using survival analysis. Diabetes Care 30, 878–883 (2007).

    CAS  PubMed  Google Scholar 

  6. Bellamy, L., Casas, J.-P., Hingorani, A. D. & Williams, D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373, 1773–1779 (2009).

    CAS  PubMed  Google Scholar 

  7. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 34, S62-9 (2011).

  8. Zhu, Y. & Zhang, C. Prevalence of gestational diabetes and risk of progression to Type 2 Diabetes: a global perspective. Curr. Diab. Rep. 16, 7 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Paulo, M. S., Abdo, N. M., Bettencourt-Silva, R. & Al-Rifai, R. H. Gestational Diabetes Mellitus in Europe: A systematic review and meta-analysis of prevalence studies. Front. Endocrinol. 12, 691033 (2021).

    Google Scholar 

  10. Lisowski, L. A. et al. Congenital heart disease in pregnancies complicated by maternal Diabetes Mellitus. Herz 35, 19–26 (2010).

    PubMed  Google Scholar 

  11. Liu, S. et al. Association between maternal chronic conditions and congenital heart defects: a population-based cohort study. Circulation 128, 583–589 (2013).

    PubMed  Google Scholar 

  12. Simeone, R. M. et al. Diabetes and congenital heart defects: a systematic review, meta-analysis, and modeling project. Am. J. Prev. Med. 48, 195–204 (2015).

    PubMed  Google Scholar 

  13. Hoang, T. T., Marengo, L. K., Mitchell, L. E., Canfield, M. A. & Agopian, A. J. Original findings and updated meta-analysis for the association between maternal diabetes and risk for congenital heart disease phenotypes. Am. J. Epidemiol. 186, 118–128 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Helle, E. & Priest, J. R. Maternal obesity and diabetes mellitus as risk factors for congenital heart disease in the offspring. J. Am. Heart Assoc. 9, e011541 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu, Y. et al. Association of maternal prepregnancy diabetes and gestational diabetes mellitus with congenital anomalies of the newborn. Diabetes Care 43, 2983–2990 (2020).

    PubMed  PubMed Central  Google Scholar 

  16. Darwish, A. et al. Fetal echocardiographic parameters in pregnancies complicated by diabetes: a case control study. BMC Pregnancy Childbirth 22, 650 (2022).

    PubMed  PubMed Central  Google Scholar 

  17. Sonaglioni, A. et al. Comprehensive assessment of biventricular myocardial function by two-dimensional speckle tracking echocardiography in infants of gestational diabetic mothers. Acta Diabetol. 59, 1145–1156 (2022).

    CAS  PubMed  Google Scholar 

  18. Hatém, M. A. B. et al. Assessment of diastolic ventricular function in fetuses of diabetic mothers using tissue Doppler. Cardiol. Young-. 18, 297–302 (2008).

    PubMed  Google Scholar 

  19. Pilania, R., Sikka, P., Rohit, M. K., Suri, V. & Kumar, P. Fetal Cardiodynamics by Echocardiography in insulin dependent maternal diabetes and its correlation with pregnancy outcome. J. Clin. Diagn. Res. 10, QC01-4 (2016).

    PubMed  Google Scholar 

  20. Bhorat, I., Pillay, M. & Reddy, T. Determination of the fetal myocardial performance index in women with gestational impaired glucose tolerance and to assess whether this parameter is a possible prognostic indicator of adverse fetal outcome. J. Matern. Fetal Neonatal Med. 31, 2019–2026 (2018).

    PubMed  Google Scholar 

  21. Bhorat, I., Pillay, M. & Reddy, T. Assessment of the fetal myocardial performance index in well-controlled gestational diabetics and to determine whether it is predictive of adverse perinatal outcome. Pediatr. Cardiol. 40, 1460–1467 (2019).

    PubMed  Google Scholar 

  22. Özalp, M. et al. Fetal cardiac Doppler changes in gestational diabetic pregnancies and its relationship with perinatal outcomes. J. Obstet. Gynaecol. Res. 47, 3480–3487 (2021).

    PubMed  Google Scholar 

  23. Mor-Avi, V. et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur. J. Echocardiogr. J. Work. Gr. Echocardiogr. Eur. Soc. Cardiol. 12, 167–205 (2011).

    Google Scholar 

  24. Ohira, A. et al. The assessment of the fetal heart function using two-dimensional speckle tracking with a high frame rate. Early Hum. Dev. 151, 105160 (2020).

    PubMed  Google Scholar 

  25. van Oostrum, N. H. M. et al. Fetal myocardial deformation measured with two-dimensional speckle-tracking echocardiography: longitudinal prospective cohort study of 124 healthy fetuses. Ultrasound Obstet. Gynecol. 59, 651–659 (2022).

    PubMed  PubMed Central  Google Scholar 

  26. Crispi, F. et al. Feasibility and reproducibility of a standard protocol for 2D Speckle tracking and tissue doppler-based strain and strain rate analysis of the fetal heart. Fetal Diagn. Ther. 32, 96–108 (2012).

    PubMed  Google Scholar 

  27. Song, X. et al. Ventricular myocardial deformation in fetuses with tetralogy of fallot: A necessary field of investigation. Front. Cardiovasc. Med. 8, 764676 (2021).

    PubMed  PubMed Central  Google Scholar 

  28. van Oostrum, N. H. M. et al. Two-dimensional Speckle tracking echocardiography in Fetal Growth Restriction: a systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 254, 87–94 (2020).

    PubMed  Google Scholar 

  29. Patey, O., Carvalho, J. S. & Thilaganathan, B. Perinatal changes in fetal cardiac geometry and function in diabetic pregnancy at term. J. Int. Soc. Ultrasound Obstet. Gynecol. 54, 634–642 (2019).

    CAS  Google Scholar 

  30. Cade, W. T. et al. Markers of maternal and infant metabolism are associated with ventricular dysfunction in infants of obese women with type 2 diabetes. Pediatr. Res. 82, 768–775 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Aguilera, J. et al. Cardiac function in gestational diabetes mellitus: A longitudinal study from fetal life to infancy. BJOG 128, 272–279 (2021).

    CAS  PubMed  Google Scholar 

  32. Kulkarni, A. et al. Fetal myocardial deformation in maternal diabetes mellitus and obesity. Ultrasound Obstet. Gynecol. 49, 630–636 (2017).

    CAS  PubMed  Google Scholar 

  33. Firpo, C., Hoffman, J. I. & Silverman, N. H. Evaluation of fetal heart dimensions from 12 weeks to term. Am. J. Cardiol. 87, 594–600 (2001).

    CAS  PubMed  Google Scholar 

  34. Rychik, J. et al. American Society of Echocardiography guidelines and standards for performance of the fetal echocardiogram. J. Am. Soc. Echocardiogr. 17, 803–810 (2004).

    PubMed  Google Scholar 

  35. Voigt, J.-U. et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J. Am. Soc. Echocardiogr. Publ. Am. Soc. Echocardiogr. 28, 183–193 (2015).

    Google Scholar 

  36. Depla, A. L. et al. Effect of maternal diabetes on fetal heart function on echocardiography: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 57, 539–550 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chu, C., Gui, Y. H., Ren, Y. Y. & Shi, L. Y. The impacts of maternal gestational diabetes mellitus (GDM) on fetal hearts. Biomed. Environ. Sci. 25, 15–22 (2012).

    PubMed  Google Scholar 

  38. Garcia-Flores, J. et al. Fetal myocardial morphological and functional changes associated with well-controlled gestational diabetes. Eur. J. Obstet. Gynecol. Reprod. Biol. 154, 24–26 (2011).

    PubMed  Google Scholar 

  39. Wang, H., Xu, Y., Fu, J. & Huang, L. Evaluation of the regional ventricular systolic function by two-dimensional strain echocardiography in gestational diabetes mellitus (GDM) fetuses with good glycemic control. J. Matern. Neonatal Med. 28, 2150–2154 (2015).

    Google Scholar 

  40. Miranda, J. O., Cerqueira, R. J., Ramalho, C., Areias, J. C. & Henriques-Coelho, T. Fetal cardiac function in maternal diabetes: A conventional and speckle-tracking Echocardiographic Study. J. Am. Soc. Echocardiogr. 31, 333–341 (2018).

    PubMed  Google Scholar 

  41. Hoodbhoy, Z. et al. Is the child at risk? Cardiovascular remodelling in children born to diabetic mothers. Cardiol. Young-. 29, 467–474 (2019).

    PubMed  Google Scholar 

  42. Yu, Y. et al. Maternal diabetes during pregnancy and early onset of cardiovascular disease in offspring: population based cohort study with 40 years of follow-up. BMJ 367, l6398 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Nakano, H. et al. Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. eLife 6, e29330 (2017).

  44. Reinking, B. E., Wedemeyer, E. W., Weiss, R. M., Segar, J. L. & Scholz, T. D. Cardiomyopathy in offspring of diabetic rats is associated with activation of the MAPK and apoptotic pathways. Cardiovasc. Diabetol. 8, 43 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. Kopylov, A. T. et al. Severe types of fetopathy are associated with changes in the serological proteome of diabetic mothers. Medicine 100, e27829 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mdaki, K. S. et al. Maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancy through metabolic stress and mitochondrial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 310, H681–92 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Upadhyaya, B. et al. Prenatal exposure to a maternal high-fat diet affects histone modification of cardiometabolic genes in newborn rats. Nutrients 9, 407 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Nelson, S. M., Sattar, N., Freeman, D. J., Walker, J. D. & Lindsay, R. S. Inflammation and endothelial activation is evident at birth in offspring of mothers with type 1 diabetes. Diabetes 56, 2697–2704 (2007).

    CAS  PubMed  Google Scholar 

  49. Turan, S. et al. Decreased fetal cardiac performance in the first trimester correlates with hyperglycemia in pregestational maternal diabetes. Ultrasound Obstet. Gynecol. 38, 325–331 (2011).

    CAS  PubMed  Google Scholar 

  50. Al-Biltagi, M., Tolba, O. A. R. E., Rowisha, M. A., Mahfouz, A. E.-S. & Elewa, M. A. Speckle tracking and myocardial tissue imaging in infant of diabetic mother with gestational and pregestational diabetes. Pediatr. Cardiol. 36, 445–453 (2015).

    PubMed  Google Scholar 

  51. Litwin, L. et al. No effect of gestational diabetes or pre-gestational obesity on 6-year offspring left ventricular function-RADIEL study follow-up. Acta Diabetol. 57, 1463–1472 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ling Li (LL), MD, PhD from University of Nebraska Medical Center, Omaha, NE and Daisy Gonzalez (DG), RDCS from White Plains Hospital, NY for their efforts in data measurements and data collection.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Xander Jacquemyn was supported by the Belgian American Educational Foundation.

Author information

Authors and Affiliations

Authors

Contributions

X.J.: Concept/design, data collection, data interpretation, drafting article, critical revision of article, and approval of article. S.K.: Concept/design, data interpretation, drafting article, critical revision of article, and approval of article. P.D.: Data interpretation, drafting article, critical revision of article, and approval of article. W.J.R.: Data interpretation, drafting article, critical revision of article, and approval of article. A.K.: Concept/design, data collection, data interpretation, drafting article, critical revision of article, and approval of article.

Corresponding author

Correspondence to Aparna Kulkarni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent statement

All participants included in this study gave informed consent for inclusion at the time of enrollment and at follow-up at 1- and 2 years respectively.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacquemyn, X., Kutty, S., Dhanantwari, P. et al. Impaired myocardial deformation persists at 2 years in offspring of mothers with diabetes mellitus. Pediatr Res 94, 996–1002 (2023). https://doi.org/10.1038/s41390-023-02566-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02566-6

Search

Quick links