Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neonatal Neurocritical Care Series

Neuromonitoring in neonatal critical care part II: extremely premature infants and critically ill neonates

Abstract

Neonatal intensive care has expanded from cardiorespiratory care to a holistic approach emphasizing brain health. To best understand and monitor brain function and physiology in the neonatal intensive care unit (NICU), the most commonly used tools are amplitude-integrated EEG, full multichannel continuous EEG, and near-infrared spectroscopy. Each of these modalities has unique characteristics and functions. While some of these tools have been the subject of expert consensus statements or guidelines, there is no overarching agreement on the optimal approach to neuromonitoring in the NICU. This work reviews current evidence to assist decision making for the best utilization of these neuromonitoring tools to promote neuroprotective care in extremely premature infants and in critically ill neonates. Neuromonitoring approaches in neonatal encephalopathy and neonates with possible seizures are discussed separately in the companion paper.

Impact

  • For extremely premature infants, NIRS monitoring has a potential role in individualized brain-oriented care, and selective use of aEEG and cEEG can assist in seizure detection and prognostication.

  • For critically ill neonates, NIRS can monitor cerebral perfusion, oxygen delivery, and extraction associated with disease processes as well as respiratory and hypodynamic management. Selective use of aEEG and cEEG is important in those with a high risk of seizures and brain injury.

  • Continuous multimodal monitoring as well as monitoring of sleep, sleep–wake cycling, and autonomic nervous system have a promising role in neonatal neurocritical care.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Maturation of EEG and aEEG with postmenstrual age.
Fig. 2: Demonstration of the value of multimodal monitoring in a term neonate with severe HIE.

References

  1. Davis, A. S. et al. Serial aEEG recordings in a cohort of extremely preterm infants: feasibility and safety. J. Perinatol. 35, 373–378 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Bowen, J. R., Paradisis, M. & Shah, D. Decreased aEEG continuity and baseline variability in the first 48 h of life associated with poor short-term outcome in neonates born before 29 weeks gestation. Pediatr. Res. 67, 538–544 (2010).

    Article  PubMed  Google Scholar 

  3. Wikström, S. et al. Early single-channel aEEG/EEG predicts outcome in very preterm infants. Acta Paediatr. 101, 719–726 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Song, J. et al. Early amplitude-integrated electroencephalography predicts brain injury and neurological outcome in very preterm infants. Sci. Rep. 5, 13810 (2015).

  5. Middel, R. G., Brandenbarg, N., Van Braeckel, K., Bos, A. F. & Ter Horst, H. J. The predictive value of amplitude-integrated electroencephalography in preterm infants for IQ and other neuropsychological outcomes at early school age. Neonatology 113, 287–295 (2018).

    Article  PubMed  Google Scholar 

  6. Iyer, K. K. et al. Cortical burst dynamics predict clinical outcome early in extremely preterm infants. Brain 138, 2206–2218 (2015).

    Article  PubMed  Google Scholar 

  7. Burdjalov, V. F., Baumgart, S. & Spitzer, A. R. Cerebral function monitoring: a new scoring system for the evaluation of brain maturation in neonates. Pediatrics 112, 855–861 (2003).

    Article  PubMed  Google Scholar 

  8. Iyer, K. K. et al. Early detection of preterm intraventricular hemorrhage from clinical electroencephalography. Crit. Care Med. 43, 2219–2227 (2015).

    Article  PubMed  Google Scholar 

  9. Klebermass, K. et al. Amplitude-integrated EEG pattern predicts further outcome in preterm infants. Pediatr. Res. 70, 102–108 (2011).

    Article  PubMed  Google Scholar 

  10. West, C. R. et al. Early low cardiac output is associated with compromised electroencephalographic activity in very preterm infants. Pediatr. Res. 59, 610–615 (2006).

    Article  PubMed  Google Scholar 

  11. Helderman, J. B., Welch, C. D., Leng, X. & O’Shea, T. M. Sepsis-associated electroencephalographic changes in extremely low gestational age neonates. Early Hum. Dev. 86, 509–513 (2010).

    Article  PubMed  Google Scholar 

  12. ter Horst, H. J., Jongbloed-Pereboom, M., van Eykern, L. A. & Bos, A. F. Amplitude-integrated electroencephalographic activity is suppressed in preterm infants with high scores on illness severity. Early Hum. Dev. 87, 385–390 (2011).

    Article  PubMed  Google Scholar 

  13. Griesmaier, E. et al. Systematic characterization of amplitude-integrated EEG signals for monitoring the preterm brain. Pediatr. Res. 73, 226–235 (2013).

    Article  PubMed  Google Scholar 

  14. Norman, E., Wikström, S., Rosén, I., Fellman, V. & Hellström-Westas, L. Premedication for intubation with morphine causes prolonged depression of electrocortical background activity in preterm infants. Pediatr. Res. 73, 87–94 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Rakshasbhuvankar, A., Paul, S., Nagarajan, L., Ghosh, S. & Rao, S. Amplitude-integrated EEG for detection of neonatal seizures: a systematic review. Seizure 33, 90–98 (2015).

    Article  PubMed  Google Scholar 

  16. Deshpande, P., McNamara, P. J., Hahn, C., Shah, P. S. & Guerguerian, A. M. A practical approach toward interpretation of amplitude integrated electroencephalography in preterm infants. Eur. J. Pediatr. 181, 2187–2200 (2022).

    Article  PubMed  Google Scholar 

  17. El-Dib, M. et al. Early amplitude integrated electroencephalography and outcome of very low birth weight infants. Pediatr. Int. 53, 315–321 (2011).

    Article  PubMed  Google Scholar 

  18. Vanhatalo, S., Metsäranta, M. & Andersson, S. High-fidelity recording of brain activity in the extremely preterm babies: feasibility study in the incubator. Clin. Neurophysiol. 119, 439–445 (2008).

    Article  PubMed  Google Scholar 

  19. Lloyd, R., Goulding, R., Filan, P. & Boylan, G. Overcoming the practical challenges of electroencephalography for very preterm infants in the neonatal intensive care unit. Acta Paediatr. 104, 152–157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. El Ters, N. M., Mathur, A. M., Jain, S., Vesoulis, Z. A. & Zempel, J. M. Long term electroencephalography in preterm neonates: safety and quality of electrode types. Clin. Neurophysiol. 129, 1366–1371 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Foreman, S. W., Thorngate, L., Burr, R. L. & Thomas, K. A. Electrode challenges in amplitude-integrated electroencephalography (aEEG): research application of a novel noninvasive measure of brain function in preterm infants. Biol. Res Nurs. 13, 251–259 (2011).

    Article  PubMed  Google Scholar 

  22. Clancy, R. R., Tharp, B. R. & Enzman, D. EEG in premature infants with intraventricular hemorrhage. Neurology 34, 583–590 (1984).

    Article  CAS  PubMed  Google Scholar 

  23. Okumura, A., Hayakawa, F., Kato, T., Kuno, K. & Watanabe, K. Positive rolandic sharp waves in preterm infants with periventricular leukomalacia: their relation to background electroencephalographic abnormalities. Neuropediatrics 30, 278–282 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Lloyd, R. O. et al. Predicting 2-y outcome in preterm infants using early multimodal physiological monitoring. Pediatr. Res. 80, 382–388 (2016).

    Article  PubMed  Google Scholar 

  25. Lloyd, R. O., O’Toole, J. M., Livingstone, V., Filan, P. M. & Boylan, G. B. Can EEG accurately predict 2-year neurodevelopmental outcome for preterm infants? Arch. Dis. Child Fetal Neonatal Ed. 106, 535–541 (2021).

    Article  PubMed  Google Scholar 

  26. Glass, H. C. et al. Seizures in preterm neonates: a multicenter observational cohort study. Pediatr. Neurol. 72, 19–24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hunter, C. L., Oei, J. L., Suzuki, K., Lui, K. & Schindler, T. Patterns of use of near-infrared spectroscopy in neonatal intensive care units: international usage survey. Acta Paediatr. 107, 1198–1204 (2018).

    Article  PubMed  Google Scholar 

  28. Alderliesten, T. et al. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr. Res. 79, 55–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Alderliesten, T. et al. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J. Pediatr. 162, 698–704.e692 (2013).

    Article  PubMed  Google Scholar 

  30. Sortica da Costa, C. et al. Changes in hemodynamics, cerebral oxygenation and cerebrovascular reactivity during the early transitional circulation in preterm infants. Pediatr. Res. 86, 247–253 (2019).

    Article  PubMed  Google Scholar 

  31. Vesoulis, Z. A., Whitehead, H. V., Liao, S. M. & Mathur, A. M. The hidden consequence of intraventricular hemorrhage: persistent cerebral desaturation after IVH in preterm infants. Pediatr. Res. 89, 869–877 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. El-Dib, M. et al. Association of early cerebral oxygen saturation and brain injury in extremely preterm infants. J. Perinatol. 42, 1385–1391 (2022).

  33. Hyttel-Sorensen, S. et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ 350, g7635 (2015).

  34. Plomgaard, A. M. et al. Brain injury in the international multicenter randomized SafeBoosC phase II feasibility trial: cranial ultrasound and magnetic resonance imaging assessments. Pediatr. Res. 79, 466–472 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Plomgaard, A. M. et al. The SafeBoosC II randomized trial: treatment guided by near-infrared spectroscopy reduces cerebral hypoxia without changing early biomarkers of brain injury. Pediatr. Res. 79, 528–535 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Plomgaard, A. M. et al. No neurodevelopmental benefit of cerebral oximetry in the first randomised trial (SafeBoosC II) in preterm infants during the first days of life. Acta Paediatr. 108, 275–281 (2019).

    Article  PubMed  Google Scholar 

  37. El-Dib, M. et al. Management of post-hemorrhagic ventricular dilatation in the infant born preterm. J. Pediatr. 226, 16–27.e3 (2020).

  38. Norooz, F. et al. Decompressing posthaemorrhagic ventricular dilatation significantly improves regional cerebral oxygen saturation in preterm infants. Acta Paediatr. 104, 663–669 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Kochan, M. et al. Changes in cerebral oxygenation in preterm infants with progressive posthemorrhagic ventricular dilatation. Pediatr. Neurol. 73, 57–63 (2017).

    Article  PubMed  Google Scholar 

  40. Rhee, C. J. et al. Neonatal cerebrovascular autoregulation. Pediatr. Res. 84, 602–610 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Soul, J. S. et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr. Res. 61, 467–473 (2007).

    Article  PubMed  Google Scholar 

  42. O’Leary, H. et al. Elevated cerebral pressure passivity is associated with prematurity-related intracranial hemorrhage. Pediatrics 124, 302–309 (2009).

    Article  PubMed  Google Scholar 

  43. da Costa, C. S., Czosnyka, M., Smielewski, P. & Austin, T. Optimal mean arterial blood pressure in extremely preterm infants within the first 24 h of life. J. Pediatr. 203, 242–248 (2018).

    Article  PubMed  Google Scholar 

  44. Kleiser, S. et al. Comparison of tissue oximeters on a liquid phantom with adjustable optical properties: an extension. Biomed. Opt. Express 9, 86–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Andresen, B., Greisen, G. & Hyttel-Sorensen, S. Comparison of Invos 5100c and Nonin Sensmart X-100 oximeter performance in preterm infants with spontaneous apnea. Pediatr. Res. 87, 1244–1250 (2020).

    Article  PubMed  Google Scholar 

  46. Pichler, G. et al. Cerebral regional tissue Oxygen Saturation to Guide Oxygen Delivery in preterm neonates during immediate transition after birth (COSGOD III): an investigator-initiated, randomized, multi-center, multi-national, clinical trial on additional cerebral tissue oxygen saturation monitoring combined with defined treatment guidelines versus standard monitoring and treatment as usual in premature infants during immediate transition: study protocol for a randomized controlled trial. Trials 20, 178 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hansen, M. L. et al. Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants: a protocol for the SafeBoosC randomised clinical phase III trial. Trials 20, 811 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shellhaas, R. A. et al. The American Clinical Neurophysiology Society’s guideline on continuous electroencephalography monitoring in neonates. J. Clin. Neurophysiol. 28, 611–617 (2011).

    Article  PubMed  Google Scholar 

  49. Lin, J. J. et al. Electrographic seizures in children and neonates undergoing extracorporeal membrane oxygenation. Pediatr. Crit. Care Med. 18, 249–257 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Okochi, S. et al. Prevalence of seizures in pediatric extracorporeal membrane oxygenation patients as measured by continuous electroencephalography. Pediatr. Crit. Care Med. 19, 1162–1167 (2018).

    Article  PubMed  Google Scholar 

  51. Naim, M. Y. et al. Subclinical seizures identified by postoperative electroencephalographic monitoring are common after neonatal cardiac surgery. J. Thorac. Cardiovasc. Surg. 150, 169–180 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Levy, R. J. et al. Evaluation of seizure risk in infants after cardiopulmonary bypass in the absence of deep hypothermic cardiac arrest. Neurocrit. Care 36, 30–38 (2021).

  53. Klinger, G., Chin, C. N., Otsubo, H., Beyene, J. & Perlman, M. Prognostic value of EEG in neonatal bacterial meningitis. Pediatr. Neurol. 24, 28–31 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Scher, M. S., Klesh, K. W., Murphy, T. F. & Guthrie, R. D. Seizures and infarction in neonates with persistent pulmonary hypertension. Pediatr. Neurol. 2, 332–339 (1986).

    Article  CAS  PubMed  Google Scholar 

  55. Gunn, J. K., Beca, J., Hunt, R. W., Olischar, M. & Shekerdemian, L. S. Perioperative amplitude-integrated EEG and neurodevelopment in infants with congenital heart disease. Intensive Care Med. 38, 1539–1547 (2012).

    Article  PubMed  Google Scholar 

  56. El-Naggar, W. I., Keyzers, M. & McNamara, P. J. Role of amplitude-integrated electroencephalography in neonates with cardiovascular compromise. J. Crit. Care 25, 317–321 (2010).

    Article  PubMed  Google Scholar 

  57. Chequer, R. S. et al. Prognostic value of EEG in neonatal meningitis: retrospective study of 29 infants. Pediatr. Neurol. 8, 417–422 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Wiwattanadittakul, N. et al. The utility of EEG monitoring in neonates with hyperammonemia due to inborn errors of metabolism. Mol. Genet Metab. 125, 235–240 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Olischar, M. et al. Amplitude-integrated electroencephalography in newborns with inborn errors of metabolism. Neonatology 102, 203–211 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Theda, C. Use of amplitude integrated electroencephalography (aEEG) in patients with inborn errors of metabolism – a new tool for the metabolic geneticist. Mol. Genet Metab. 100(Suppl 1), S42–S48 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Wikstrom, S. et al. Carbon dioxide and glucose affect electrocortical background in extremely preterm infants. Pediatrics 127, e1028–e1034 (2011).

    Article  PubMed  Google Scholar 

  62. Eaton, D. G., Wertheim, D., Oozeer, R., Dubowitz, L. M. & Dubowitz, V. Reversible changes in cerebral activity associated with acidosis in preterm neonates. Acta Paediatr. 83, 486–492 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Victor, S., Appleton, R. E., Beirne, M., Marson, A. G. & Weindling, A. M. Effect of carbon dioxide on background cerebral electrical activity and fractional oxygen extraction in very low birth weight infants just after birth. Pediatr. Res. 58, 579–585 (2005).

    Article  PubMed  Google Scholar 

  64. Greisen, G. & Pryds, O. Low CBF, discontinuous EEG activity, and periventricular brain injury in ill, preterm neonates. Brain Dev. 11, 164–168 (1989).

    Article  CAS  PubMed  Google Scholar 

  65. Zaleski, K. L. & Kussman, B. D. Near-infrared spectroscopy in pediatric congenital heart disease. J. Cardiothorac. Vasc. Anesth. 34, 489–500 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. El-Dib, M. & Soul, J. S. Monitoring and management of brain hemodynamics and oxygenation. Handb. Clin. Neurol. 162, 295–314 (2019).

    Article  PubMed  Google Scholar 

  67. Clair, M. P. et al. Prognostic value of cerebral tissue oxygen saturation during neonatal extracorporeal membrane oxygenation. PLoS One 12, e0172991 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zaramella, P. et al. Does helmet CPAP reduce cerebral blood flow and volume by comparison with infant flow driver CPAP in preterm neonates? Intensive Care Med. 32, 1613–1619 (2006).

    Article  PubMed  Google Scholar 

  69. Palmer, K. S. et al. Effects of positive and negative-pressure ventilation on cerebral blood-volume of newborn-infants. Acta Paediatr. 84, 132–139 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Noone, M. A., Sellwood, M., Meek, J. H. & Wyatt, J. S. Postnatal adaptation of cerebral blood flow using near infrared spectroscopy in extremely preterm infants undergoing high-frequency oscillatory ventilation. Acta Paediatr. 92, 1079–1084 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Dix, L. M. L. et al. Carbon dioxide fluctuations are associated with changes in cerebral oxygenation and electrical activity in infants born preterm. J. Pediatr. 187, 66–72.e61 (2017).

    Article  PubMed  Google Scholar 

  72. Pichler, G., Urlesberger, B. & Müller, W. Impact of bradycardia on cerebral oxygenation and cerebral blood volume during apnoea in preterm infants. Physiol. Meas. 24, 671–680 (2003).

    Article  PubMed  Google Scholar 

  73. Alderliesten, T. et al. Hypotension in preterm neonates: low blood pressure alone does not affect neurodevelopmental outcome. J. Pediatr. 164, 986–991 (2014).

    Article  PubMed  Google Scholar 

  74. Lemmers, P. M., Toet, M. C. & van Bel, F. Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics 121, 142–147 (2008).

    Article  PubMed  Google Scholar 

  75. Underwood, M. A., Milstein, J. M. & Sherman, M. P. Near-infrared spectroscopy as a screening tool for patent ductus arteriosus in extremely low birth weight infants. Neonatology 91, 134–139 (2007).

    Article  PubMed  Google Scholar 

  76. Van Hoften, J. C. R., Verhagen, E. A., Keating, P., Ter Horst, H. J. & Bos, A. F. Cerebral tissue oxygen saturation and extraction in preterm infants before and after blood transfusion. Arch. Dis. Child.: Fetal Neonatal Ed. 95, F352–F358 (2010).

    Article  PubMed  Google Scholar 

  77. Seidel, D. et al. Changes in regional tissue oxygenation saturation and desaturations after red blood cell transfusion in preterm infants. J. Perinatol. 33, 282–287 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. El-Dib, M. et al. Brain maturity and variation of oxygen extraction in premature infants. Am. J. Perinatol. 33, 814–820 (2016).

    Article  PubMed  Google Scholar 

  79. Rallis, D. et al. The association of the cerebral oxygenation during neonatal sepsis with the Bayley-III scale of infant and toddler development index scores at 18-24 months of age. Early Hum. Dev. 136, 49–53 (2019).

    Article  PubMed  Google Scholar 

  80. Dilena, R. et al. Consensus protocol for EEG and amplitude-integrated eeg assessment and monitoring in neonates. Clin. Neurophysiol. 132, 886–903 (2021).

    Article  PubMed  Google Scholar 

  81. Leikos, S., Tokariev, A., Koolen, N., Nevalainen, P. & Vanhatalo, S. Cortical responses to tactile stimuli in preterm infants. Eur. J. Neurosci. 51, 1059–1073 (2020).

    Article  PubMed  Google Scholar 

  82. Kaminska, A. et al. Cortical auditory-evoked responses in preterm neonates: revisited by spectral and temporal analyses. Cereb. Cortex 28, 3429–3444 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Colonnese, M. T. et al. A conserved switch in sensory processing prepares developing neocortex for vision. Neuron 67, 480–498 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nevalainen, P. et al. Evoked potentials recorded during routine EEG predict outcome after perinatal asphyxia. Clin. Neurophysiol. 128, 1337–1343 (2017).

    Article  PubMed  Google Scholar 

  85. Nevalainen, P. et al. Bedside neurophysiological tests can identify neonates with stroke leading to cerebral palsy. Clin. Neurophysiol. 130, 759–766 (2019).

    Article  PubMed  Google Scholar 

  86. Nevalainen, P. et al. Evaluation of SEPs in asphyxiated newborns using a 4-electrode aEEG brain monitoring set-up. Clin. Neurophysiol. Pract. 3, 122–126 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nevalainen, P. et al. Neonatal somatosensory evoked potentials persist during hypothermia. Acta Paediatr. 106, 912–917 (2017).

    Article  PubMed  Google Scholar 

  88. Smeds, E. et al. Corticokinematic coherence as a new marker for somatosensory afference in newborns. Clin. Neurophysiol. 128, 647–655 (2017).

    Article  PubMed  Google Scholar 

  89. Deshpande, P. et al. Combined multimodal cerebral monitoring and focused hemodynamic assessment in the first 72 h in extremely low gestational age infants. Neonatology 117, 504–512 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Vanderhaegen, J. et al. The effect of changes in tPCO2 on the fractional tissue oxygen extraction–as measured by near-infrared spectroscopy–in neonates during the first days of life. Eur. J. Paediatr. Neurol. 13, 128–134 (2009).

    Article  PubMed  Google Scholar 

  91. Sullivan, B. A. & Fairchild, K. D. Vital signs as physiomarkers of neonatal sepsis. Pediatr. Res. 91, 273–282 (2022).

    Article  PubMed  Google Scholar 

  92. Variane, G. F. T., Camargo, J. P. V., Rodrigues, D. P., Magalhaes, M. & Mimica, M. J. Current status and future directions of neuromonitoring with emerging technologies in neonatal care. Front Pediatr. 9, 755144 (2021).

    Article  PubMed  Google Scholar 

  93. Kirischuk, S. et al. Modulation of neocortical development by early neuronal activity: physiology and pathophysiology. Front. Cell Neurosci. 11, 379 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Molnár, Z., Luhmann, H. J. & Kanold, P. O. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 370, eabb2153 (2020).

  95. Shellhaas, R. A. et al. Neonatal sleep-wake analyses predict 18-month neurodevelopmental outcomes. Sleep 40, zsx144 (2017).

  96. Thoresen, M., Hellström-Westas, L., Liu, X. & De Vries, L. S. Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics 126, e131–e139 (2010).

    Article  PubMed  Google Scholar 

  97. Kudchadkar, S. R., Aljohani, O. A. & Punjabi, N. M. Sleep of critically ill children in the pediatric intensive care unit: a systematic review. Sleep. Med. Rev. 18, 103–110 (2014).

    Article  PubMed  Google Scholar 

  98. Levy, J. et al. Impact of hands-on care on infant sleep in the neonatal intensive care unit. Pediatr. Pulmonol. 52, 84–90 (2017).

    Article  PubMed  Google Scholar 

  99. Weisman, O., Magori-Cohen, R., Louzoun, Y., Eidelman, A. I. & Feldman, R. Sleep-wake transitions in premature neonates predict early development. Pediatrics 128, 706–714 (2011).

    Article  PubMed  Google Scholar 

  100. de Vries, J. I., Visser, G. H. & Prechtl, H. F. The emergence of fetal behaviour. I. Qualitative aspects. Early Hum. Dev. 7, 301–322 (1982).

    Article  PubMed  Google Scholar 

  101. Kidokoro, H., Inder, T., Okumura, A. & Watanabe, K. What does cyclicity on amplitude-integrated EEG mean? J. Perinatol. 32, 565–569 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Greisen, G., Hellstrom-Vestas, L., Lou, H., Rosen, I. & Svenningsen, N. Sleep-waking shifts and cerebral blood flow in stable preterm infants. Pediatr. Res. 19, 1156–1159 (1985).

    Article  CAS  PubMed  Google Scholar 

  103. Bennet, L. et al. Discrimination of sleep states using continuous cerebral bedside monitoring (amplitude-integrated electroencephalography) compared to polysomnography in infants. Acta Paediatr. 105, e582–e587 (2016).

    Article  PubMed  Google Scholar 

  104. Isler, J. R., Thai, T., Myers, M. M. & Fifer, W. P. An automated method for coding sleep states in human infants based on respiratory rate variability. Dev. Psychobiol. 58, 1108–1115 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Javorka, K. et al. Heart rate variability in newborns. Physiol. Res. 66, S203–S214 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Chiera, M. et al. Heart rate variability in the perinatal period: a critical and conceptual review. Front. Neurosci. 14, 561186 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Doyle, O. M. et al. Heart rate variability during sleep in healthy term newborns in the early postnatal period. Physiol. Meas. 30, 847–860 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Thiriez, G. et al. Altered autonomic control in preterm newborns with impaired neurological outcomes. Clin. Auton. Res. 25, 233–242 (2015).

    Article  PubMed  Google Scholar 

  109. Yiallourou, S. R., Sands, S. A., Walker, A. M. & Horne, R. S. Maturation of heart rate and blood pressure variability during sleep in term-born infants. Sleep 35, 177–186 (2012).

    PubMed  PubMed Central  Google Scholar 

  110. El-Dib, M., Massaro, A. N. & Aly, H. in Neuroscience Research Advances (eds Figueredo, B. & Meléndez, F.) 109–134 (Nova Science Publishers, Inc., 2010).

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Substantial contributions to conception and design: all authors. Drafting the article or revising it critically for important intellectual content: all authors. Final approval of the version to be published: all authors.

Corresponding author

Correspondence to Mohamed El-Dib.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El-Dib, M., Abend, N.S., Austin, T. et al. Neuromonitoring in neonatal critical care part II: extremely premature infants and critically ill neonates. Pediatr Res (2022). https://doi.org/10.1038/s41390-022-02392-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-022-02392-2

Search

Quick links