Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Population Study Article
  • Published:

Placental microRNAs relate to early childhood growth trajectories

Abstract

Background

Poor placental function is a common cause of intrauterine growth restriction, which in turn is associated with increased risks of adverse health outcomes. Our prior work suggests that birthweight and childhood obesity-associated genetic variants functionally impact placental function and that placental microRNA are associated with birthweight. To address the influence of the placenta beyond birth, we assessed the relationship between placental microRNAs and early childhood growth.

Methods

Using the SITAR package, we generated two parameters that describe individual weight trajectories of children (0–5 years) in the New Hampshire Birth Cohort Study (NHBCS, n = 238). Using negative binomial generalized linear models, we identified placental microRNAs that relate to growth parameters (FDR < 0.1), while accounting for sex, gestational age at birth, and maternal parity.

Results

Genes targeted by the six growth trajectory-associated microRNAs are enriched (FDR < 0.05) in growth factor signaling (TGF/beta: miR-876; EGF/R: miR-155, Let-7c; FGF/R: miR-155; IGF/R: Let-7c, miR-155), calmodulin signaling (miR-216a), and NOTCH signaling (miR-629).

Conclusions

Growth-trajectory microRNAs target pathways affecting placental proliferation, differentiation and function. Our results suggest a role for microRNAs in regulating placental cellular dynamics and supports the Developmental Origins of Health and Disease hypothesis that fetal environment can have impacts beyond birth.

Impact

  • We found that growth trajectory associated placenta microRNAs target genes involved in signaling pathways central to the formation, maintenance and function of placenta; suggesting that placental cellular dynamics remain critical to infant growth to term and are under the control of microRNAs.

  • Our results contribute to the existing body of research suggesting that the placenta plays a key role in programming health in the offspring.

  • This is the first study to relate molecular patterns in placenta, specifically microRNAs, to early childhood growth trajectory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Participation in weight observation collection.
Fig. 2: NHBCS growth curves.
Fig. 3: Differential expression analysis results.
Fig. 4: The potential roles of growth trajectory microRNAs in the cellular dynamics of placental trophoblasts.

Similar content being viewed by others

Data availability

RICHS total RNA-seq raw reads have been deposited at the NCBI database of Genotypes and Phenotypes (dbGaP) (phs001586). RICHS and NHBCS microRNA count matrices (https://doi.org/10.15139/S3/FUC5EW) and covariate data (https://doi.org/10.15139/S3/O9KYGB) are available at Dataverse.

References

  1. Barker, D. J. P. & Thornburg, K. L. Placental programming of chronic diseases, cancer and lifespan: a review. Placenta 34, 841–845 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Red-Horse, K. et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J. Clin. Invest. 114, 744–754 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaufmann, P., Mayhew, T. M. & Charnock-Jones, D. S. Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta 25, 114–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Bartel, D. P. Metazoan MicroRNAs. Cell 173, 20–51 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Quévillon Huberdeau, M. & Simard, M. J. A guide to microRNA-mediated gene silencing. FEBS J. 286, 642–652 (2019).

    Article  PubMed  Google Scholar 

  6. Pasquinelli, A. E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13, 271–282 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Hayder, H., O’Brien, J., Nadeem, U. & Peng, C. MicroRNAs: crucial regulators of placental development. Reproduction 155, R259–R271 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Kennedy, E. M. et al. Placental microRNA expression associates with birthweight through control of adipokines: results from two independent cohorts. Epigenetics 16, 770–782 (2021).

  9. Peng, S. et al. Genetic regulation of the placental transcriptome underlies birth weight and risk of childhood obesity. PLoS Genet. 14, e1007799 (2018).

  10. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Article  Google Scholar 

  11. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinforma. Oxf. Engl. 32, 3047–3048 (2016).

    Article  CAS  Google Scholar 

  12. Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W. & Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 37–52 (2012).

    Article  PubMed  Google Scholar 

  13. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Griffiths-Jones, S., Saini, H. K., van Dongen, S. & Enright, A. J. miRBase: tools for microRNA genomics. Nucleic Acids Res. 36, D154–D158 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

  17. Cole, T. J., Donaldson, M. D. C. & Ben-Shlomo, Y. SITAR—a useful instrument for growth curve analysis. Int. J. Epidemiol. 39, 1558–1566 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinforma. Oxf. Engl. 28, 882–883 (2012).

    Article  CAS  Google Scholar 

  19. Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tokar, T. et al. mirDIP 4.1—integrative database of human microRNA target predictions. Nucleic Acids Res. 46, D360–D370 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Kamburov, A. et al. ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res. 39, D712–D717 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Aplin, J. D. & Jones, C. J. P. Cell dynamics in human villous trophoblast. Hum. Reprod. Update 27, 904–922 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Gamage, T. K. et al. Side-population trophoblasts exhibit the differentiation potential of a trophoblast stem cell population, persist to term, and are reduced in fetal growth restriction. Stem Cell Rev. Rep. 16, 764–775 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Okae, H. et al. Derivation of human trophoblast stem cells. Cell Stem Cell 22, 50–63.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Latos, P. A. & Hemberger, M. From the stem of the placental tree: trophoblast stem cells and their progeny. Development 143, 3650–3660 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Knöfler, M. et al. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell. Mol. Life Sci. 76, 3479–3496 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gupta, S. K., Malhotra, S. S., Malik, A., Verma, S. & Chaudhary, P. Cell signaling pathways involved during invasion and syncytialization of trophoblast cells. Am. J. Reprod. Immunol. 75, 361–371 (2016).

    Article  PubMed  Google Scholar 

  28. Zhao, H.-J. et al. Bone morphogenetic protein 2 promotes human trophoblast cell invasion by upregulating N-cadherin via non-canonical SMAD2/3 signaling. Cell Death Dis. 9, 1–12 (2018).

    Article  Google Scholar 

  29. Zhao, H.-J. et al. Bone morphogenetic protein 2 promotes human trophoblast cell invasion by inducing activin A production. Endocrinology 159, 2815–2825 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Haider, S. et al. Notch1 controls development of the extravillous trophoblast lineage in the human placenta. Proc. Natl Acad. Sci. U. S. A. 113, E7710–E7719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Y., Yan, J., Chang, H.-M., Chen, Z.-J. & Leung, P. C. K. Roles of TGF-β superfamily proteins in extravillous trophoblast invasion. Trends Endocrinol. Metab. 32, 170–189 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Nadeem, L. et al. Nodal signals through activin receptor-like kinase 7 to inhibit trophoblast migration and invasion: implication in the pathogenesis of preeclampsia. Am. J. Pathol. 178, 1177–1189 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Myatt, L. Placental adaptive responses and fetal programming. J. Physiol. 572, 25–30 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Soares, M. J., Chakraborty, D., Kubota, K., Renaud, S. J. & Rumi, M. A. K. Adaptive mechanisms controlling uterine spiral artery remodeling during the establishment of pregnancy. Int. J. Dev. Biol. 58, 247–259 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Karachaliou, M. et al. Association of trimester-specific gestational weight gain with fetal growth, offspring obesity, and cardiometabolic traits in early childhood. Am. J. Obstet. Gynecol. 212, 502.e1–502.e14 (2015).

    Article  PubMed  Google Scholar 

  36. Dai, Y. et al. MicroRNA-155 inhibits proliferation and migration of human extravillous trophoblast derived HTR-8/SVneo cells via down-regulating cyclin D1. Placenta 33, 824–829 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Ali, A., Bouma, G. J., Anthony, R. V. & Winger, Q. A. The role of LIN28-let-7-ARID3B pathway in placental development. Int. J. Mol. Sci. 21, 3637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McWhorter, E. S. et al. LIN28B regulates androgen receptor in human trophoblast cells through Let-7c. Mol. Reprod. Dev. 86, 1086–1093 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Modi, B. P. et al. Expression patterns of the chromosome 21 MicroRNA cluster (miR-99a, miR-125b and let-7c) in chorioamniotic membranes. Placenta 49, 1–9 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. van Rooij, J. et al. Evaluation of commonly used analysis strategies for epigenome- and transcriptome-wide association studies through replication of large-scale population studies. Genome Biol. 20, 235 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health (NIEHS R24ES028507, R01ES025145, P30ES019776, NIMHD R01MD011698 and NICHD K99HD104991).

Author information

Authors and Affiliations

Authors

Contributions

E.M.K., D.C.K., K.H., J.C., D.G.-D., M.R.K. and C.J.M. conceptualized and designed the study. K.H., A.B. and D.P. acquired data. E.M.K. analyzed and interpreted the data. E.M.K. Drafted the article. K.H., A.B., D.P., D.C.K., K.H., J.C., D.G.-D., U.R., M.R.K. and C.J.M. critically reviewed and carefully revised the article. All authors approved of the version to be published.

Corresponding author

Correspondence to Carmen J. Marsit.

Ethics declarations

Competing interest

The authors declare no competing interests.

Ethics approval and consent to participate

All participants provided written, informed consent and all protocols were approved by the IRBs at the Women & Infants Hospital of Rhode Island, Dartmouth College and Emory University, respectively.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, E.M., Hermetz, K., Burt, A. et al. Placental microRNAs relate to early childhood growth trajectories. Pediatr Res 94, 341–348 (2023). https://doi.org/10.1038/s41390-022-02386-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-022-02386-0

Search

Quick links