Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Preterm birth alters the feeding-induced activation of Akt signaling in the muscle of neonatal piglets

Abstract

Background

Postnatal lean mass accretion is commonly reduced in preterm infants. This study investigated mechanisms involved in the blunted feeding-induced activation of Akt in the skeletal muscle of preterm pigs that contributes to lower protein synthesis rates.

Methods

On day 3 following cesarean section, preterm and term piglets were fasted or fed an enteral meal. Activation of Akt signaling pathways in skeletal muscle was determined.

Results

Akt1 and Akt2, but not Akt3, phosphorylation were lower in the skeletal muscle of preterm than in term pigs (P < 0.05). Activation of Akt-positive regulators, PDK1 and mTORC2, but not FAK, were lower in preterm than in term (P < 0.05). The formation of Akt complexes with GAPDH and Hsp90 and the abundance of Ubl4A were lower in preterm than in term (P < 0.05). The abundance of Akt inhibitors, PHLPP and SHIP2, but not PTEN and IP6K1, were higher in preterm than in term pigs (P < 0.05). PP2A activation was inhibited by feeding in term but not in preterm pigs (P < 0.05).

Conclusions

Our results suggest that preterm birth impairs regulatory components involved in Akt activation, thereby limiting the anabolic response to feeding. This anabolic resistance likely contributes to the reduced lean accretion following preterm birth.

Impact

  • The Akt-mTORC1 pathway plays an important role in the regulation of skeletal muscle protein synthesis in neonates.

  • This is the first evidence to demonstrate that, following preterm birth, the postprandial activation of positive regulators of Akt in the skeletal muscle is reduced, whereas the activation of negative regulators of Akt is enhanced.

  • This anabolic resistance of Akt signaling in response to feeding likely contributes to the reduced accretion of lean mass in premature infants.

  • These results may provide potential novel molecular targets for intervention to enhance lean growth in preterm neonates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Current models of Akt activation.
Fig. 2: Preterm birth attenuates the phosphorylation of Akt1 and Akt2, but not Akt3.
Fig. 3: Preterm birth blunts positive regulators of Akt activation.
Fig. 4: Preterm birth upregulates Akt endogenous inhibitors.

Similar content being viewed by others

Data availability

The datasets supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Barfield, W. D. Public health implications of very preterm birth. Clin. Perinatol. 45, 565–577 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Peila, C. et al. Extrauterine growth restriction: definitions and predictability of outcomes in a cohort of very low birth weight infants or preterm neonates. Nutrients 12, 1224–1234 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Platt, M. J. Outcomes in preterm infants. Public Health 128, 399–403 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Koontz, M. B., Gunzler, D. D., Presley, L. & Catalano, P. M. Longitudinal changes in infant body composition: association with childhood obesity. Pediatr. Obes. 9, e141–e144 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kajantie, E., Osmond, C., Barker, D. J. & Eriksson, J. G. Preterm birth–a risk factor for type 2 diabetes? The Helsinki Birth Cohort Study. Diabetes Care. 33, 2623–2625 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ahmad, I. Body composition and its components in preterm and term newborns: a cross-sectional, multimodal investigation. Am. J. Hum. Biol. 22, 69–75 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davis, T. A. & Fiorotto, M. L. Regulation of muscle growth in neonates. Curr. Opin. Clin. Nutr. Metab. Care. 12, 78–85 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davis, T. A. et al. Stimulation of protein synthesis by both insulin and amino acids is unique to skeletal muscle in neonatal pigs. Am. J. Physiol. Endocrinol. Metab. 282, E880–E890 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Suryawan, A. et al. Activation by insulin and amino acids of signaling components leading to translation initiation in skeletal muscle of neonatal pigs is developmentally regulated. Am. J. Physiol. Endocrinol. Metab. 293, E1597–E1605 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Naberhuis, J. K. et al. Prematurity blunts the feeding-induced stimulation of translation initiation signaling and protein synthesis in muscle of neonatal piglets. Am. J. Physiol. Endocrinol. Metab. 317, E839–E851 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rudar, M. et al. Prematurity blunts the insulin- and amino acid-induced stimulation of translation initiation and protein synthesis in skeletal muscle of neonatal pigs. Am. J. Physiol. Endocrinol. Metab. 320, E551–E565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blanco, C. L. et al. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons. Endocrinology 156, 813–823 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gonzalez, E. & McGraw, T. E. The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8, 2502–2508 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Gao, Y., Moten, A. & Lin, H.-K. Akt: a new activation mechanism. Cell Res. 24, 785–786 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lien, E. C., Dibble, C. C. & Toker, A. PI3K signaling in cancer: beyond AKT. Curr. Opin. Cell Biol. 45, 62–71 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sarbassov, D. D., Guertin, D. A., Ali, S. M. & Sabatini, D. M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Proc. Natl Acad. Sci. USA 97, 10832–10837 (2000).

    Google Scholar 

  17. Gupta, A. & Dey, C. S. PTEN and SHIP2 regulates PI3K/Akt pathway through focal adhesion kinase. Mol. Cell. Endocrinol. 309, 55–62 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Oudart, J. B. et al. The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through alphavbeta3 integrin interaction. Oncotarget 7, 1516–1528 (2016).

    Article  PubMed  Google Scholar 

  19. Zhao, Y. et al. Ubl4A is required for insulin-induced Akt plasma membrane translocation through promotion of Arp2/3-dependent actin branching. Proc. Natl Acad. Sci. USA 112, 9644–9649 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liao, Y. & Hung, M.-C. Physiological regulation of Akt activity and stability. Am. J. Transl. Res. 2, 19–42 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Carnero, A., Blanco-Aparicio, C., Renner, O., Link, W. & Leal, J. F. The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug. Targets 8, 187–198 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Azzi, A. SHIP2 inhibition alters redox-induced PI3K/Akt and MAP kinase pathways via PTEN over-activation in cervical cancer cells. FEBS Open Biol. 10, 2191–2205 (2020).

    Article  CAS  Google Scholar 

  23. Seshacharyulu, P., Pandey, P., Datta, K. & Batra, S. K. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett. 335, 9–18 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chakraborty, A. et al. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 143, 97–910 (2010).

    Article  Google Scholar 

  25. Jacquin, M. A. et al. GAPDH binds to active Akt, leading to Bcl-xL increase and escape from caspase-independent cell death. Cell Death Differ. 20, 1043–1054 (2015).

    Article  Google Scholar 

  26. Sato, S., Fujita, N. & Tsuruo, T. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl Acad. Sci. USA 97, 10832–10837 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang, Q. & Claret, F. X. Phosphatases: the new brakes for cancer development? Enzym. Res. 2012, 659649 (2012).

    Google Scholar 

  28. Burrin, D. G. et al. Translational advances in pediatric nutrition and gastroenterology: new insights from pig models. Ann. Rev. Anim. Biosci. 8, 321–335 (2020).

    Article  Google Scholar 

  29. Williamson, D. L. Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: effect of obesity vs. REDD1 deficiency. J. Appl. Physiol. 117, 246–256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Du, K. & Tsichlis, P. N. Regulation of the Akt kinase by interacting proteins. Oncogene 24, 7401–7409 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Gao, T., Furnari, F. & Newton, A. C. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell 18, 13–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Hay, W. W. Jr Optimizing nutrition of the preterm infant. Zhongguo Dang Dai Er Ke Za Zhi 19, 1–21 (2017).

    PubMed  Google Scholar 

  33. Glass, D. J. PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr. Top. Microbiol. Immunol. 346, 267–278 (2010).

    CAS  PubMed  Google Scholar 

  34. Wilson, F. A. et al. Feeding rapidly stimulates protein synthesis in skeletal muscle of the neonatal pig by enhancing translation initiation. J. Nutr. 139, 1873–1880 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hers, I., Vincent, E. E. & Tavaré, J. M. Akt signalling in health and disease. Cell Signal. 23, 1515–1527 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Matheny, R. W. Jr. et al. Akt2 is the predominant Akt isoform expressed in human skeletal muscle. Physiol. Rep. 6, 1–8 (2018).

    Article  Google Scholar 

  37. Manning, B. D. & Alex Toker, A. Akt/PKB signaling: navigating the network. Cell 169, 381–405 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Toker, A. & Cantley, L. C. Signalling through the lipid products of phosphoinositide-3-OH kinase. Nature 387, 673–676 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Paul, R. et al. FAK activates Akt-mTOR signaling to promote the growth and progression of MMTV-Wnt1-driven basal-like mammary tumors. Breast Cancer Res. 22, 59–73 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yun, B.-G. & Matts, R. L. Hsp90 functions to balance the phosphorylation state of Akt during C2C12 myoblast differentiation. Cell Signal. 17, 1477–1485 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Georgescu, M. M. PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer 1, 1170–1177 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pan, Q., Wu, J., Liu, Y., Li, X. & Chen, J. Involvement of hepatic SHIP2 and PI3K/Akt signalling in the regulation of plasma insulin by xiaoyaosan in chronic immobilization-stressed rats. Molecules 24, 480–496 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Millward, T. A., Zolnierowicz, S. & Hemmings, B. A. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci. 24, 186–191 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Sangodkar, J. et al. All roads lead to PP2A: exploiting the therapeutic potential of this phosphatase. FEBS J. 283, 1004–1024 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, Z. et al. Inositol pyrophosphates mediate the effects of aging on bone marrow mesenchymal stem cells by inhibiting Akt signaling. Stem Cell Res. Ther. 5, 33–45 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is a publication of the USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine. The contents of this publication do not necessarily reflect the views or policies of the USDA, nor does the mention of trade names, commercial products, or organization imply endorsement by the US government. We thank H.V. Nguyen and R.D. Parada for expert technical assistance and the staff of the Comparative Nutrition Research Facility for animal care.

Funding

This work was supported by the National Institute of Child Health and Human Development Grants HD-085573 (T.A.D.), HD-072891 (T.A.D.), HD-099080 (T.A.D. and M.L.F.), USDA Current Research Information System Grant 3092-51000-060 (T.A.D.), and USDA National Institute of Food and Agriculture Grant 2013-67015-20438 (T.A.D.).

Author information

Authors and Affiliations

Authors

Contributions

A.S., M.L.F., and T.A.D. conceived and designed the research; A.S., M.R., and J.K.N. performed experiments; A.S. and M.R. analyzed data; A.S., M.R., J.K.N., and M.L.F. interpreted the results of experiments; A.S. drafted the manuscript; A.S., M.R., J.K.N., M.L.F., and T.A.D. edited and revised the manuscript; A.S., M.R., J.K.N., M.L.F., and T.A.D. approved the final version to be published.

Corresponding author

Correspondence to Teresa A. Davis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Patient consent was not required.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryawan, A., Rudar, M., Naberhuis, J.K. et al. Preterm birth alters the feeding-induced activation of Akt signaling in the muscle of neonatal piglets. Pediatr Res 93, 1891–1898 (2023). https://doi.org/10.1038/s41390-022-02382-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-022-02382-4

Search

Quick links