Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Bedside tracking of functional autonomic age in preterm infants

Abstract

Background

Preterm birth predisposes infants to adverse outcomes that, without early intervention, impacts their long-term health. To assist bedside monitoring, we developed a tool to track the autonomic maturation of the preterm by assessing heart rate variability (HRV) changes during intensive care.

Methods

Electrocardiogram (ECG) recordings were longitudinally recorded in 67 infants (26–38 weeks postmenstrual age (PMA)). Supervised machine learning was used to generate a functional autonomic age (FAA), by combining 50 computed HRV features from successive 5-minute ECG epochs (median of 23 epochs per infant). Performance of the FAA was assessed by correlation to PMA, clinical outcomes and the infant’s functional brain age (FBA), an index of maturation derived from the electroencephalogram.

Results

The FAA was strongly correlated to PMA (r = 0.86, 95% CI: 0.83–0.93) with a mean absolute error (MAE) of 1.66 weeks and also accurately estimated FBA (MAE = 1.58 weeks, n = 54 infants). The relationship between PMA and FAA was not confounded by neurodevelopmental outcome (p = 0.18, n = 45), sex (p = 0.88, n = 56), patent ductus arteriosus (p = 0.08, n = 56), IVH (p = 0.63, n = 56) or body weight at birth (p = 0.95, n = 56).

Conclusions

The FAA, an index derived from the ubiquitous ECG signal, offers direct avenues towards estimating autonomic maturation at the bedside during intensive care monitoring.

Impact

  • The development of a tool to track functional autonomic age in preterm infants based on heart rate variability features in the electrocardiogram provides a rapid and specialized view of autonomic maturation at the bedside.

  • Functional autonomic age is linked closely to postmenstrual age and central nervous system function response, as determined by its relationship to functional brain age from the electroencephalogram.

  • Tracking functional autonomic age during neonatal intensive care unit monitoring offers a unique insight into cardiovascular health in infants born extremely preterm and their maturational trajectories to term age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the study.
Fig. 2: FAA and PMA relationships following extremely preterm birth.

Similar content being viewed by others

Data availability

Code for processing an ECG epoch to estimate FAA, along with the trained data model, can be found here: https://github.com/brain-modelling-group/Estimate-FAA.

References

  1. Patel, R. M. Short-and long-term outcomes for extremely preterm infants. Am. J. Perinatol. 33, 318–328 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Blencowe, H. et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod. Health 10, 1–14 (2013).

    Article  Google Scholar 

  3. Allen, M. C., Cristofalo, E. A. & Kim, C. Outcomes of preterm infants: morbidity replaces mortality. Clin. Perinatol. 38, 441–454 (2011).

    Article  PubMed  Google Scholar 

  4. Symington, A. J. & Pinelli, J. Developmental care for promoting development and preventing morbidity in preterm infants. Cochrane Database Syst. Rev. 2006, CD001814 (2006).

  5. Bonifacio, S. L., Glass, H. C., Peloquin, S. & Ferriero, D. M. A new neurological focus in neonatal intensive care. Nat. Rev. Neurol. 7, 485–494 (2011).

    Article  PubMed  Google Scholar 

  6. Bonifacio, S. L. & Van Meurs, K. Neonatal neurocritical care: providing brain-focused care for all at risk neonates. Semin. Pediatr. Neurol. 32, 100774 (2019).

  7. World Health Organization. Who Child Growth Standards: Growth Velocity Based on Weight, Length and Head Circumference: Methods and Development (World Health Organization, 2009).

  8. Cole, T. J. The development of growth references and growth charts. Ann. Hum. Biol. 39, 382–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jones, M. J., Goodman, S. J. & Kobor, M. S. DNA methylation and healthy human aging. Aging Cell 14, 924–932 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stevenson, N. J. et al. Automated cot‐side tracking of functional brain age in preterm infants. Ann. Clin. Transl. Neurol. 7, 891–902 (2020).

  11. Dubois, J. et al. Mapping the early cortical folding process in the preterm newborn brain. Cereb. Cortex 18, 1444–1454 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Smyser, C. D. et al. Prediction of brain maturity in infants using machine-learning algorithms. Neuroimage 136, 1–9 (2016).

    Article  PubMed  Google Scholar 

  13. Barlow, J., Herath, N. I., Torrance, C. B., Bennett, C. & Wei, Y. The Neonatal Behavioral Assessment Scale (NBAS) and Newborn Behavioral Observations (NBO) system for supporting caregivers and improving outcomes in caregivers and their infants. Cochrane Database Syst. Rev. 3, CD011754 (2018).

  14. Novak, I. et al. Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr. 171, 897–907 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Einspieler, C., Bos, A. F., Libertus, M. E. & Marschik, P. B. The general movement assessment helps us to identify preterm infants at risk for cognitive dysfunction. Front. Psychol. 7, 406 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Craciunoiu, O. & Holsti, L. A systematic review of the predictive validity of neurobehavioral assessments during the preterm period. Phys. Occup. Ther. Pediatr. 37, 292–307 (2017).

    Article  PubMed  Google Scholar 

  17. Lonsdale, H., Jalali, A., Ahumada, L. & Matava, C. Machine learning and artificial intelligence in pediatric research: current state, future prospects, and examples in perioperative and critical care. J. Pediatr. 221, S3–S10 (2020).

    Article  Google Scholar 

  18. Stevenson, N. et al. Functional maturation in preterm infants measured by serial recording of cortical activity. Sci. Rep. 7, 1–7 (2017).

    Article  Google Scholar 

  19. Stevenson, N. J. et al. Reliability and accuracy of EEG interpretation for estimating age in preterm infants. Ann. Clin. Transl. Neurol. 7, 1564–1573 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kamath, M. V., Watanabe, M. & Upton, A. Heart Rate Variability (HRV) Signal Analysis: Clinical Applications (CRC Press, 2012).

  21. Verma, P. K., Panerai, R. B., Rennie, J. M. & Evans, D. H. Grading of cerebral autoregulation in preterm and term neonates. Pediatr. Neurol. 23, 236–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Tan, C. M. J. & Lewandowski, A. J. The transitional heart: from early embryonic and fetal development to neonatal life. Fetal Diagnosis Ther. 47, 373–386 (2020).

    Article  Google Scholar 

  23. Longin, E., Gerstner, T., Schaible, T., Lenz, T. & Koenig, S. Maturation of the autonomic nervous system: differences in heart rate variability in premature vs. term infants. J Perinat. Med. 34, 303–308 (2006).

  24. Hoyer, D. et al. Fetal functional brain age assessed from universal developmental indices obtained from neuro-vegetative activity patterns. PLoS ONE 8, e74431 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lavanga, M. et al. Maturation of the autonomic nervous system in premature infants: estimating development based on heart-rate variability analysis. Front. Physiol. 11, 581250 (2021).

  26. Clairambault, J., Curzi-Dascalova, L., Kauffmann, F., Médigue, C. & Leffler, C. Heart rate variability in normal sleeping full-term and preterm neonates. Early Hum. Dev. 28, 169–183 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Massin, M. & Von Bernuth, G. Normal ranges of heart rate variability during infancy and childhood. Pediatr. Cardiol. 18, 297–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Rosenstock, E., Cassuto, Y. & Zmora, E. Heart rate variability in the neonate and infant: analytical methods, physiological and clinical observations. Acta Paediatr. 88, 477–482 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Nakamura, T., Horio, H., Miyashita, S., Chiba, Y. & Sato, S. Identification of development and autonomic nerve activity from heart rate variability in preterm infants. Biosystems 79, 117–124 (2005).

    Article  PubMed  Google Scholar 

  30. Cardoso, S., Silva, M. J. & Guimarães, H. Autonomic nervous system in newborns: a review based on heart rate variability. Childs Nerv. Syst. 33, 1053–1063 (2017).

    Article  PubMed  Google Scholar 

  31. Golder, V., Hepponstall, M., Yiallourou, S. R., Odoi, A. & Horne, R. S. autonomic cardiovascular control in hypotensive critically ill preterm infants is impaired during the first days of life. Early Hum. Dev. 89, 419–423 (2013).

    Article  PubMed  Google Scholar 

  32. Stevenson, N. J. et al. Automated cot‐side tracking of functional brain age in preterm infants. Ann. Clin. Transl. Neurol. 7, 891–902 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoshi, R. A., Pastre, C. M., Vanderlei, L. C. M. & Godoy, M. F. Poincaré plot indexes of heart rate variability: relationships with other nonlinear variables. Auton. Neurosci. 177, 271–274 (2013).

    Article  PubMed  Google Scholar 

  34. Doyle, O. et al. Heart rate variability during sleep in healthy term newborns in the early postnatal period. Physiol. Meas. 30, 847 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Le, T. T. et al. A nonlinear simulation framework supports adjusting for age when analyzing brainage. Front. Aging Neurosci. 10, 317 (2018).

  36. Papile, L.-A., Burstein, J., Burstein, R. & Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J. Pediatr. 92, 529–534 (1978).

    Article  CAS  PubMed  Google Scholar 

  37. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).

    Google Scholar 

  38. Silvani, A., Calandra-Buonaura, G., Dampney, R. A. L. & Cortelli, P. Brain–heart interactions: physiology and clinical implications. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150181 (2016).

    Article  Google Scholar 

  39. Shaffer, F. & Ginsberg, J. P. An overview of heart rate variability metrics and norms. Front. Public Health 5, 258 (2017).

  40. Watanabe, K., Hayakawa, F. & Okumura, A. Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants. Brain Dev. 21, 361–372 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Javorka, K. et al. Determinants of heart rate in newborns. Acta Med. Martiniana https://doi.org/10.2478/v10201-011-0012-x (2011).

  42. Ulanovsky, I., Haleluya, N., Blazer, S. & Weissman, A. The effects of caffeine on heart rate variability in newborns with apnea of prematurity. J. Perinatol. 34, 620–623 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Goudjil, S. et al. Patent ductus arteriosus in preterm infants is associated with cardiac autonomic alteration and predominant parasympathetic stimulation. Early Hum. Dev. 89, 631–634 (2013).

    Article  PubMed  Google Scholar 

  44. Patural, H. et al. Autonomic maturation from birth to 2 years: normative values. Heliyon 5, e01300 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schlatterer, S. D. et al. Autonomic development in preterm infants is associated with morbidity of prematurity. Pediatr. Res. 91, 171–177 (2022).

    Article  PubMed  Google Scholar 

  46. Jary, S., Whitelaw, A., Walløe, L. & Thoresen, M. Comparison of Bayley‐2 and Bayley‐3 scores at 18 months in term infants following neonatal encephalopathy and therapeutic hypothermia. Dev. Med. Child Neurol. 55, 1053–1059 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by an NHMRC Grant no. 2002135.

Author information

Authors and Affiliations

Authors

Contributions

K.K.I., N.J.S., V.G., S.V., and K.K.-S. conceptualized the design of the study and overall motivations of the study. V.G., U.L., and K.K.-S. assisted with data collection, curation, and resources necessary for investigation. K.K.I. and N.J.S. processed, analyzed, and interpreted the data. S.V., K.K.-S., and V.G. further assisted with the clinical interpretations. K.K.I., N.J.S., and S.V. wrote and edited the draft of the manuscript. K.K.-S., J.A.R., V.G., and U.L. contributed substantially to the manuscript and provided critical revisions.

Corresponding author

Correspondence to Kartik K. Iyer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Informed parental consent was obtained for all infants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iyer, K.K., Leitner, U., Giordano, V. et al. Bedside tracking of functional autonomic age in preterm infants. Pediatr Res 94, 206–212 (2023). https://doi.org/10.1038/s41390-022-02376-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-022-02376-2

Search

Quick links