Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Effects of semi-upright swings on vital signs in NICU infants



The aim of this study was to compare the impact of a semi-upright swing with a standard crib on vital signs in infants in the neonatal intensive care unit (NICU).


We performed a within-subjects’ comparison of vital signs of NICU infants corrected to ≥34 weeks of gestation and placed in the supine position versus the semi-upright position in a swing. The primary outcome was the mean oxygen saturation, and the secondary outcomes were the mean heart rate, the proportion of time with oxygen saturation (SpO2) <90%, and respiratory rate.


Of the 65 infants, 34 (57%) were male and 32 (50%) were black. The mean ± SD gestational age at birth was 32.4 ± 5.1 weeks. In all, 40% were on noninvasive respiratory support. There were no significant differences in oxygen saturation, heart rate, time with oxygen desaturation defined by SpO2 < 90%, or respiratory rate between the supine and semi-upright positions. A higher risk of desaturations was observed in infants without respiratory support (RR, 1.24, 95% CI, 1.15–1.33) and low-birth-weight infants (RR, 1.55, 95% CI, 1.42–1.69).


The placement of infants in a semi-upright swing resulted in no discernible differences in averaged vital signs compared to the supine position in NICU infants.


  • We identified no significant differences in averaged oxygen saturation, heart rate, or respiratory rate among NICU infants placed in a semi-upright swing compared to the supine position.

  • Desaturation events occurred at a higher frequency in low-birth-weight infants and those on room air when placed in the swing, although none required oxygen supplementation.

  • The results from the current study support that it is probably safe to use semi-upright swings in the NICU environment, although additional studies are necessary for generalization to the unmonitored home environment.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Summary of changes in vital signs in infants placed in the swing compared to the crib.
Fig. 2: Summary of subgroup effects related to the changes in vital signs in infants placed in the swing compared to the crib.
Fig. 3: Summary of temporal trends in oxygen saturation and heart rate in the crib and the swing.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.


  1. Goodstein, M. H. et al. Transition to a safe home sleep environment for the NICU patient. Pediatrics. 2021;148.

  2. U.S. Consumer Product Safety Commission. Fisher-price recalls rock ‘n play sleepers due to reports of deaths. (2019).

  3. Moon, R. Y. & Task Force on Sudden Infant Death Syndrome. SIDS and other sleep-related infant deaths: evidence base for 2016 updated recommendations for a safe infant sleeping environment. Pediatrics 138, e20162940 (2016).

  4. Callahan, C. W. Use of seating devices in infants too young to sit. Arch. Pediatr. Adolesc. Med. 151, 233 (1997).

    CAS  Article  Google Scholar 

  5. Kesavan, K. & Parga, J. Apnea of prematurity: current practices and future directions. Neoreviews 18, e149–e160 (2017).

    Article  Google Scholar 

  6. Chandrasekharan, P., Rawat, M., Reynolds, A. M., Phillips, K. & Lakshminrusimha, S. Apnea, bradycardia and desaturation spells in premature infants: impact of a protocol for the duration of “spell-free” observation on interprovider variability and readmission rates. J. Perinatol. 38, 86–91 (2018).

    CAS  Article  Google Scholar 

  7. Manja, V., Saugstad, O. D. & Lakshminrusimha, S. Oxygen saturation targets in preterm infants and outcomes at 18-24 months: a systematic review. Pediatrics 139, e20161609 (2017).

    Article  Google Scholar 

  8. Cohen, J. A power primer. Psychol. Bull. 112, 155–159 (1992).

    CAS  Article  Google Scholar 

  9. Brown, H. & Prescott, R. Applied Mixed Models in Medicine (Wiley, 2015).

  10. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Sofw. 67, 1–48 (2015).

  11. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Article  Google Scholar 

  12. Neath, A. A. & Cavanaugh, J. E. The Bayesian information criterion: background, derivation, and applications. WIREs Comput. Stat. 4, 199–203 (2012).

    Article  Google Scholar 

  13. Batra, E. K., Midgett, J. D. & Moon, R. Y. Hazards associated with sitting and carrying devices for children two years and younger. J. Pediatr. 167, 183–187 (2015).

    Article  Google Scholar 

  14. Pollack-Nelson, C. Fall and suffocation injuries associated with in-home use of car seats and baby carriers. Pediatr. Emerg. Care 16, 77–79 (2000).

    CAS  Article  Google Scholar 

  15. Farmakakis, T., Alexe, D. M., Nicolaidou, P., Dessypris, N. & Petridou, E. Baby-bouncer-related injuries: an under-appreciated risk. Eur. J. Pediatr. 163, 42–43 (2004).

    Article  Google Scholar 

  16. Côté, A., Bairam, A., Deschenes, M. & Hatzakis, G. Sudden infant deaths in sitting devices. Arch. Dis. Child. 93, 384–389 (2008).

    Article  Google Scholar 

  17. Farooqui, M. et al. Cerebral oxygenation monitoring of ex-preterm infants during the infant car seat challenge test. Paediatr. Child Health 25, 16–19 (2020).

    Article  Google Scholar 

  18. Merchant, J. R., Worwa, C., Porter, S., Coleman, J. M. & deRegnier, R. A. Respiratory instability of term and near-term healthy newborn infants in car safety seats. Pediatrics 108, 647–652 (2001).

    CAS  Article  Google Scholar 

  19. Kinane, T. B., Murphy, J., Bass, J. L. & Corwin, M. J. Comparison of respiratory physiologic features when infants are placed in car safety seats or car beds. Pediatrics 118, 522–527 (2006).

    Article  Google Scholar 

  20. Davis, N. L. Screening for cardiopulmonary events in neonates: a review of the infant car seat challenge. J. Perinatol. 35, 235–240 (2015).

    CAS  Article  Google Scholar 

  21. Willett, L. D., Leuschen, M. P., Nelson, L. S. & Nelson, R. M. Ventilatory changes in convalescent infants positioned in car seats. J. Pediatr. 115, 451–455 (1989).

    CAS  Article  Google Scholar 

  22. Hoffman, B. D. et al. Getting babies safely home: a retrospective chart review of car safety seat tolerance screening outcomes. Acad. Pediatr. 21, 1355–1362 (2021).

    Article  Google Scholar 

  23. Arens, R. & Marcus, C. L. Pathophysiology of upper airway obstruction: a developmental perspective. Sleep 27, 997–1019 (2004).

    Article  Google Scholar 

  24. Davis, N. L. Car seat screening for low birth weight term neonates. Pediatrics 136, 89–96 (2015).

    Article  Google Scholar 

  25. Magnarelli, A., Shah Solanki, N. & Davis, N. L. Car seat tolerance screening for late-preterm infants. Pediatrics 145, e20191703 (2020).

    Article  Google Scholar 

  26. Saigal, S., Watts, J. & Campbell, D. Randomized clinical trial of an oscillating air mattress in preterm infants: effect on apnea, growth, and development. J. Pediatr. 109, 857–864 (1986).

    CAS  Article  Google Scholar 

  27. Korner, A. F., Guilleminault, C., Hoed, J. V. & den, Baldwin, R. B. Reduction of sleep apnea and bradycardia in preterm infants on oscillating water beds: a controlled polygraphic study. Pediatrics 61, 528–533 (1978).

    CAS  Article  Google Scholar 

  28. Tuck, S. J., Monin, P., Duvivier, C., May, T. & Vert, P. Effect of a rocking bed on apnoea of prematurity. Arch. Dis. Child. 57, 475–477 (1982).

    CAS  Article  Google Scholar 

  29. Thach, B. T. & Stark, A. R. Spontaneous neck flexion and airway obstruction during apneic spells in preterm infants. J. Pediatr. 94, 275–281 (1979).

    CAS  Article  Google Scholar 

  30. Perlman, J. M. & Volpe, J. J. Episodes of apnea and bradycardia in the preterm newborn: impact on cerebral circulation. Pediatrics 76, 333–338 (1985).

    CAS  Article  Google Scholar 

  31. Walter, L. M. et al. Bradycardias are associated with more severe effects on cerebral oxygenation in very preterm infants than in late preterm infants. Early Hum. Dev. 127, 33–41 (2018).

    Article  Google Scholar 

Download references


We thank Dr. Natalie Davis for feedback on an earlier version of the manuscript. We also thank Johnnie Chan for assistance with downloading bedside telemetry data.

Author information

Authors and Affiliations



S.K. conceptualized and designed the study, collected data, drafted the initial manuscript, and reviewed and revised the manuscript. A.I. performed and interpreted the data analyses and reviewed and revised the manuscript. D.E.-M. conceptualized and designed the study, coordinated, and supervised data collection and reviewed and revised the manuscript. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Dina El-Metwally.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study protocol was approved by the local Institutional Review Board. Parents of all subjects gave written consent to participate in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kadakia, S., Isaiah, A. & El-Metwally, D. Effects of semi-upright swings on vital signs in NICU infants. Pediatr Res (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


Quick links