Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inherited KDM6AA649T facilitates tumor-immune escape and exacerbates colorectal signet-ring cell carcinoma outcomes

Abstract

Childhood onset of colorectal signet-ring cell carcinoma (CR-SRCC) is extremely rare and featured as highly malignant with poor prognosis. Here we reported a CR-SRCC case of 11-year-old boy with a novel inherited X-linked KDM6AA694T mutation. The H3K27me3 demethylase KDM6A was frequently mutated in varieties of tumors and acts as a tumor suppressor. In vivo H3K27me3 demethylation assay demonstrated that KDM6AA694T had dampened H3K27me3 demethylase activity. Overexpression of KDM6AA694T in SRCC cell line KATO3 promoted cell proliferation, invasion and migration, which were further confirmed in vivo by constructing orthotopic tumor growth and lung metastasis model. Besides, expression of KDM6AA694T in immune cells suppresses inflammatory macrophage response and effector T cell response. In conclusion, we characterized a novel inherited KDM6AA694T mutant from a childhood-onset SRCC case and demonstrated that the mutant with impaired H3K27me3 demethylase activity could potentiate tumor malignancy and suppress antitumor immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A SR-SRCC case of 11-year-old boy with novel inherited X-linked KDM6AA649T mutation.
Fig. 2: KDM6AA694T mutant have impaired H3K27me3 demethylase activity.
Fig. 3: KDM6AA694T mutant promotes tumor growth and metastasis.
Fig. 4: The KDM6AA694T mutant suppresses inflammatory macrophage response.
Fig. 5: RNA-seq analysis revealed that Jurkat cells expressing KDM6AA694T displayed suppressed effector T cell response.
Fig. 6: T cells expressing KDM6AA694T were incompetent to launch effector T-cell response.
Fig. 7: working model.

Similar content being viewed by others

Data availability

The raw sequencing data have been deposited in the Chinese National Genomics Data Center (accession code HRA002692).

References

  1. Shu Y, Zhang W, Hou Q, Zhao L, Zhang S, Zhou J, et al. Prognostic significance of frequent CLDN18-ARHGAP26/6 fusion in gastric signet-ring cell cancer. Nat Commun. 2018;9:2447.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Benesch MGK, Mathieson A. Epidemiology of signet ring cell adenocarcinomas. Cancers (Basel). 2020;12:1544.

    Article  PubMed  Google Scholar 

  3. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Article  Google Scholar 

  4. Korphaisarn K, Morris V, Davis JS, Overman MJ, Fogelman DR, Kee BK, et al. Signet ring cell colorectal cancer: genomic insights into a rare subpopulation of colorectal adenocarcinoma. Br J Cancer. 2019;121:505–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nam JY, Oh BY, Hong HK, Bae JS, Kim TW, Ha SY, et al. Molecular characterization of colorectal signet-ring cell carcinoma using whole-exome and RNA sequencing. Transl Oncol. 2018;11:836–44.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li Y, Li J, Wang R, Zhang L, Fu G, Wang X, et al. Frequent RNF43 mutation contributes to moderate activation of Wnt signaling in colorectal signet-ring cell carcinoma. Protein Cell. 2020;11:292–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alvi MA, Loughrey MB, Dunne P, McQuaid S, Turkington R, Fuchs MA, et al. Molecular profiling of signet ring cell colorectal cancer provides a strong rationale for genomic targeted and immune checkpoint inhibitor therapies. Br J Cancer. 2017;117:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang S, Wang Z, Zhou J, Huang J, Zhou L, Luo J, et al. EZH2 inhibitor GSK126 suppresses antitumor immunity by driving production of myeloid-derived suppressor cells. Cancer Res. 2019;79:2009–20.

    Article  CAS  PubMed  Google Scholar 

  9. Revia S, Seretny A, Wendler L, Banito A, Eckert C, Breuer K, et al. Histone H3K27 demethylase KDM6A is an epigenetic gatekeeper of mTORC1 signalling in cancer. Gut. 2022;71:1613–28.

    CAS  PubMed  Google Scholar 

  10. Kong N, Zhang R, Wu G, Sui X, Wang J, Kim NY, et al. Intravesical delivery of KDM6A-mRNA via mucoadhesive nanoparticles inhibits the metastasis of bladder cancer. Proc Natl Acad Sci USA 2022;119:e2112696119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalisz M, Bernardo E, Beucher A, Maestro MA, Del Pozo N, Millán I, et al. HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress pancreatic cancer. EMBO J. 2020;39:e102808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stief SM, Hanneforth AL, Weser S, Mattes R, Carlet M, Liu WH, et al. Loss of KDM6A confers drug resistance in acute myeloid leukemia. Leukemia. 2020;34:50–62.

    Article  PubMed  Google Scholar 

  13. Bosselut R. Pleiotropic functions of H3K27Me3 demethylases in immune cell differentiation. Trends Immunol. 2016;37:102–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Manna S, Kim JK, Bauge C, Cam M, Zhao Y, Shetty J, et al. Histone H3 Lysine 27 demethylases Jmjd3 and Utx are required for T-cell differentiation. Nat Commun. 2015;6:8152.

    Article  PubMed  Google Scholar 

  15. Northrup D, Yagi R, Cui K, Proctor WR, Wang C, Placek K, et al. Histone demethylases UTX and JMJD3 are required for NKT cell development in mice. Cell Biosci. 2017;7:25.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cook KD, Shpargel KB, Starmer J, Whitfield-Larry F, Conley B, Allard DE, et al. T follicular helper cell-dependent clearance of a persistent virus infection requires T cell expression of the histone demethylase UTX. Immunity. 2015;43:703–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Itoh Y, Golden LC, Itoh N, Matsukawa MA, Ren E, Tse V, et al. The X-linked histone demethylase Kdm6a in CD4+ T lymphocytes modulates autoimmunity. J Clin Investig. 2019;129:3852–63.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gao J, Gu J, Pan X, Gan X, Ju Z, Zhang S, et al. Blockade of miR-142-3p promotes anti-apoptotic and suppressive function by inducing KDM6A-mediated H3K27me3 demethylation in induced regulatory T cells. Cell Death Dis. 2019;10:332.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li X, Zhang Q, Shi Q, Liu Y, Zhao K, Shen Q, et al. Demethylase Kdm6a epigenetically promotes IL-6 and IFN-beta production in macrophages. J Autoimmun. 2017;80:85–94.

    Article  CAS  PubMed  Google Scholar 

  20. Chen J, Xu X, Li Y, Li F, Zhang J, Xu Q, et al. Kdm6a suppresses the alternative activation of macrophages and impairs energy expenditure in obesity. Cell Death Differ. 2021;28:1688–704.

    Article  CAS  PubMed  Google Scholar 

  21. Kobatake K, Ikeda KI, Nakata Y, Yamasaki N, Ueda T, Kanai A, et al. Kdm6a deficiency activates inflammatory pathways, promotes M2 macrophage polarization, and causes bladder cancer in cooperation with p53 dysfunction. Clin Cancer Res. 2020;26:2065–79.

    Article  CAS  PubMed  Google Scholar 

  22. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schulz WA, Lang A, Koch J, Greife A. The histone demethylase UTX/KDM6A in cancer: progress and puzzles. Int J Cancer. 2019;145:614–20.

    Article  CAS  PubMed  Google Scholar 

  24. Rodriguez-Vida A, Lerner SP, Bellmunt J. The cancer genome atlas project in bladder cancer. Cancer Treat Res. 2018;175:259–71.

    Article  PubMed  Google Scholar 

  25. Wilcox AN, Silverman DT, Friesen MC, Locke SJ, Russ DE, Hyun N, et al. Smoking status, usual adult occupation, and risk of recurrent urothelial bladder carcinoma: data from The Cancer Genome Atlas (TCGA) Project. Cancer Causes Control. 2016;27:1429–35.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang L, Shilatifard A. UTX mutations in human cancer. Cancer Cell. 2019;35:168–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Revia S, Seretny A, Wendler L, Banito A, Eckert C, Breuer K, et al. Histone H3K27 demethylase KDM6A is an epigenetic gatekeeper of mTORC1 signalling in cancer. Gut. 2022;71:1613–1628.

    CAS  PubMed  Google Scholar 

  28. Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, et al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science. 2007;318:447–50.

    Article  CAS  PubMed  Google Scholar 

  29. Ler LD, Ghosh S, Chai X, Thike AA, Heng HL, Siew EY, et al. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Sci Transl Med. 2017;9:eaai8312.

    Article  PubMed  Google Scholar 

  30. Liu Y, Qiu N, Shen L, Liu Q, Zhang J, Cheng YY, et al. Nanocarrier-mediated immunogenic chemotherapy for triple negative breast cancer. J Control Release. 2020;323:431–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhattacharya S, Ghosh A, Maiti S, Ahir M, Debnath GH, Gupta P, et al. Delivery of thymoquinone through hyaluronic acid-decorated mixed Pluronic® nanoparticles to attenuate angiogenesis and metastasis of triple-negative breast cancer. J Control Release. 2020;322:357–74.

    Article  CAS  PubMed  Google Scholar 

  32. Ceccaldi R, Sarangi P, D’Andrea AD. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol. 2016;17:337–49.

    Article  CAS  PubMed  Google Scholar 

  33. Cribbs AP, Terlecki-Zaniewicz S, Philpott M, Baardman J, Ahern D, Lindow M, et al. Histone H3K27me3 demethylases regulate human Th17 cell development and effector functions by impacting on metabolism. Proc Natl Acad Sci USA. 2020;117:6056–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.

    Article  CAS  PubMed  Google Scholar 

  35. Shin HM, Kapoor VN, Kim G, Li P, Kim HR, Suresh M, et al. Transient expression of ZBTB32 in anti-viral CD8+ T cells limits the magnitude of the effector response and the generation of memory. PLoS Pathog. 2017;13:e1006544.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li Y, Zhai P, Zheng Y, Zhang J, Kellum JA, Peng Z. Csf2 attenuated sepsis-induced acute kidney injury by promoting alternative macrophage transition. Front Immunol. 2020;11:1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi B, Li W, Song Y, Wang Z, Ju R, Ulman A, et al. UTX condensation underlies its tumour-suppressive activity. Nature. 2021;597:726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Van der Meulen J, Sanghvi V, Mavrakis K, Durinck K, Fang F, Matthijssens F, et al. The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood. 2015;125:13–21.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Beke A, Laplane L, Riviere J, Yang Q, Torres-Martin M, Dayris T, et al. Multilayer intraclonal heterogeneity in chronic myelomonocytic leukemia. Haematologica. 2020;105:112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yi J, Shi X, Xuan Z, Wu J. Histone demethylase UTX/KDM6A enhances tumor immune cell recruitment, promotes differentiation and suppresses medulloblastoma. Cancer Lett. 2021;499:188–200.

    Article  CAS  PubMed  Google Scholar 

  41. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 2010;463:360–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Crompton JG, Sukumar M, Restifo NP. Uncoupling T-cell expansion from effector differentiation in cell-based immunotherapy. Immunol Rev. 2014;257:264–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rao RC, Dou Y. Hijacked in cancer: the KMT2 (MLL) family of methyltransferases. Nat Rev Cancer. 2015;15:334–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miller SA, Mohn SE, Weinmann AS. Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol Cell. 2010;40:594–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gounder M, Schoffski P, Jones RL, Agulnik M, Cote GM, Villalobos VM, et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study. Lancet Oncol. 2020;21:1423–32.

    Article  CAS  PubMed  Google Scholar 

  47. Piunti A, Meghani K, Yu Y, Robertson AG, Podojil JR, McLaughlin KA, et al. Immune activation is essential for the antitumor activity of EZH2 inhibition in urothelial carcinoma. Sci Adv. 2022;8:eabo8043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ying W, Cheruku PS, Bazer FW, Safe SH, Zhou B. Investigation of macrophage polarization using bone marrow derived macrophages. J Vis Exp. 2013;23:50323.

    Google Scholar 

Download references

Acknowledgements

This research was supported by grant from National Natural Science Foundation of China (32070918 from JW), Outstanding Youth Fund of Guangdong Province (2022B1515020109 from JW), Start-up funding for the Pediatric Research Institute of Guangzhou Women and Children’s Medical Center (3001082 from JW), Natural Science Foundation of Shandong (ZR202110280038 from MF), Postdoctoral Innovation Project of Shandong Province (SDCX-ZG-202203028 from MF) and Municipal School (College) Joint Funding Project (202201020594 from CC and 202201020591 from QW). Finally, we sincerely thank BioRender (https://biorender.com/) for the elements within the experimental design diagram and graphical abstract.

Author information

Authors and Affiliations

Authors

Contributions

JW, QW and CC conceived the study cooperatively. JW and MF designed the research strategy. QW, CC, YL, and HZ provided the human tissue and blood samples and necessary interpretation of the clinical data. MF, XH and WX performed most of the experiments and data analysis with the help from Xiaojiang Lai, Xiaojie Liu and WT. WT performed the pedigree analysis of WES sequencing data. NG and GP finished the work of filing and deposition of the human genetic data. JW, MF and WX wrote the manuscript with constructive suggestions from QW and CC.

Corresponding authors

Correspondence to Chengwei Chai, Wenjing Xiong, Qiang Wu or Jun Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, M., Chai, C., Hao, X. et al. Inherited KDM6AA649T facilitates tumor-immune escape and exacerbates colorectal signet-ring cell carcinoma outcomes. Oncogene (2024). https://doi.org/10.1038/s41388-024-03029-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03029-w

Search

Quick links