Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

METTL3 promotes cellular senescence of colorectal cancer via modulation of CDKN2B transcription and mRNA stability

Abstract

Cellular senescence plays a critical role in cancer development, but the underlying mechanisms remain poorly understood. Our recent study uncovered that replicative senescent colorectal cancer (CRC) cells exhibit increased levels of mRNA N6-methyladenosine (m6A) and methyltransferase METTL3. Knockdown of METTL3 can restore the senescence-associated secretory phenotype (SASP) of CRC cells. Our findings, which were confirmed by m6A-sequencing and functional studies, demonstrate that the cyclin-dependent kinase inhibitor 2B (CDKN2B, encoding p15INK4B) is a mediator of METTL3-regulated CRC senescence. Specifically, m6A modification at position A413 in the coding sequence (CDS) of CDKN2B positively regulates its mRNA stability by recruiting IGF2BP3 and preventing binding with the CCR4-NOT complex. Moreover, increased METTL3 methylates and stabilizes the mRNA of E2F1, which binds to the −208 to −198 regions of the CDKN2B promoter to facilitate transcription. Inhibition of METTL3 or specifically targeting CDKN2B methylation can suppress CRC senescence. Finally, the METTL3/CDKN2B axis-induced senescence can facilitate M2 macrophage polarization and is correlated with aging and CRC progression. The involvement of METTL3/CDKN2B in cell senescence provides a new potential therapeutic target for CRC treatment and expands our understanding of mRNA methylation’s role in cellular senescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: METTL3 regulates culture-related replicative senescence of CRC cells.
Fig. 2: CDKN2B (p15INK4b) mediates METTL3-regulated senescence of CRC cells.
Fig. 3: METTL3 increases mRNA stability and transcription of CDKN2B in senescent CRC cells.
Fig. 4: IGF2BP3 stabilizes CDKN2B mRNA via binding with m6A 413 at CDS.
Fig. 5: METTL3 increases transcription of CDKN2B via E2F1.
Fig. 6: Generally or specifically targeting m6A suppresses CRC senescence.
Fig. 7: m6A-induced senescent CRC cells facilitates the M2 macrophage polarization.
Fig. 8: METTL3/CDKN2B-regualted senescence correlates with aging, CRC progression and TAM infiltration.

Similar content being viewed by others

Data availability

m6A-seq data are available through SRA, PRJNA841050. The detailed procedures of methods, eight figures and four tables are attached. All study data are included in the article and/or Supplementary materials.

References

  1. Wang L, Lankhorst L, Bernards R. Exploiting senescence for the treatment of cancer. Nat Rev Cancer. 2022;22:340–55.

    Article  CAS  PubMed  Google Scholar 

  2. Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev. 2019;99:1047–78.

    Article  CAS  PubMed  Google Scholar 

  3. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179:813–27.

    Article  CAS  PubMed  Google Scholar 

  4. Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol. 2022;19:619–36.

  5. Sen P, Shah PP, Nativio R, Berger SL. Epigenetic Mechanisms of Longevity and Aging. Cell. 2016;166:822–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baell JB, Leaver DJ, Hermans SJ, Kelly GL, Brennan MS, Downer NL, et al. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature. 2018;560:253–7.

    Article  CAS  PubMed  Google Scholar 

  7. Xie W, Kagiampakis I, Pan L, Zhang YW, Murphy L, Tao Y, et al. DNA Methylation Patterns Separate Senescence from Transformation Potential and Indicate Cancer Risk. Cancer Cell. 2018;33:309–21.e305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Bio. 2017;18:31–42.

    Article  CAS  Google Scholar 

  9. Huang H, Weng H, Chen J. m(6)A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell. 2020;37:270–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang J, Ao Y, Zhang Z, Mo Y, Peng L, Jiang Y, et al. Lamin A safeguards the m(6) A methylase METTL14 nuclear speckle reservoir to prevent cellular senescence. Aging Cell. 2020;19:e13215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhu H, Sun B, Zhu L, Zou G, Shen Q. N6-Methyladenosine Induced miR-34a-5p Promotes TNF-alpha-Induced Nucleus Pulposus Cell Senescence by Targeting SIRT1. Front Cell Dev Biol. 2021;9:642437.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu P, Li F, Lin J, Fukumoto T, Nacarelli T, Hao X, et al. m(6)A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nat Cell Biol. 2021;23:355–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Chen Y, Guan L, Zhang H, Huang Y, Johnson CH, et al. Carnitine palmitoyltransferase 1C regulates cancer cell senescence through mitochondria-associated metabolic reprograming. Cell Death Differ. 2018;25:735–48.

    Article  CAS  PubMed  Google Scholar 

  14. Lu L, Chen Z, Lin X, Tian L, Su Q, An P, et al. Inhibition of BRD4 suppresses the malignancy of breast cancer cells via regulation of Snail. Cell Death Differ. 2020;27:255–68.

    Article  CAS  PubMed  Google Scholar 

  15. Li ZH, Peng YX, Li JX, Chen ZJ, Chen F, Tu J, et al. N-6-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat Commun. 2020;11:2578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li J, Chen Z, Chen F, Xie G, Ling Y, Peng Y, et al. Targeted mRNA demethylation using an engineered dCas13b-ALKBH5 fusion protein. Nucleic Acids Res. 2020;48:5684–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang YT, Chen YX, Guan LH, Zhang HZ, Huang YY, Johnson CH, et al. Carnitine palmitoyltransferase 1C regulates cancer cell senescence through mitochondria- associated metabolic reprograming. Cell Death Differ. 2018;25:733–46.

    Article  PubMed Central  Google Scholar 

  18. Chen X, Gong W, Shao X, Shi T, Zhang L, Dong J, et al. METTL3-mediated m(6)A modification of ATG7 regulates autophagy-GATA4 axis to promote cellular senescence and osteoarthritis progression. Ann Rheum Dis. 2022;81:87–99.

    Article  CAS  PubMed  Google Scholar 

  19. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003;113:703–16.

    Article  CAS  PubMed  Google Scholar 

  20. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445:656–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang R, Sun L, Xia S, Wu H, Ma Y, Zhan S, et al. B7-H3 suppresses doxorubicin-induced senescence-like growth arrest in colorectal cancer through the AKT/TM4SF1/SIRT1 pathway. Cell Death Dis. 2021;12:453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wei XJ, Huo Y, Pi JN, Gao YF, Rao S, He MM, et al. METTL3 preferentially enhances non-m(6)A translation of epigenetic factors and promotes tumourigenesis. Nat Cell Biol. 2022;24:1278.

    Article  CAS  PubMed  Google Scholar 

  23. Lin X, Chai G, Wu Y, Li J, Chen F, Liu J, et al. RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun. 2019;10:2065.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer. 2015;15:397–408.

    Article  CAS  PubMed  Google Scholar 

  25. Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell. 2006;127:265–75.

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites. Cell Rep. 2014;8:284–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin SB, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Molecular Cell. 2016;62:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Molinie B, Wang J, Lim KS, Hillebrand R, Lu ZX, Van Wittenberghe N, et al. m(6)A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome. Nat Methods. 2016;13:692–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015;161:1388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593:597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44:e91.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xiao Y, Wang Y, Tang Q, Wei L, Zhang X, Jia G. An Elongation- and Ligation-Based qPCR Amplification Method for the Radiolabeling-Free Detection of Locus-Specific N(6) -Methyladenosine Modification. Angew Chem Int Ed Engl. 2018;57:15995–6000.

    Article  CAS  PubMed  Google Scholar 

  33. Siwaszek A, Ukleja M, Dziembowski A. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol. 2014;11:1122–36.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhou KR, Liu S, Sun WJ, Zheng LL, Zhou H, Yang JH, et al. ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data. Nucleic Acids Res. 2017;45:D43–50.

    Article  CAS  PubMed  Google Scholar 

  35. Khan A, Mathelier A. JASPAR RESTful API: accessing JASPAR data from any programming language. Bioinformatics. 2018;34:1612–4.

    Article  CAS  PubMed  Google Scholar 

  36. Seoane J, Pouponnot C, Staller P, Schader M, Eilers M, Massague J. TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol. 2001;3:400–8.

    Article  CAS  PubMed  Google Scholar 

  37. Tu Q, Hao J, Zhou X, Yan L, Dai H, Sun B, et al. CDKN2B deletion is essential for pancreatic cancer development instead of unmeaningful co-deletion due to juxtaposition to CDKN2A. Oncogene. 2018;37:128–38.

    Article  CAS  PubMed  Google Scholar 

  38. Davalos AR, Coppe JP, Campisi J, Desprez PY. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metast Rev. 2010;29:273–83.

    Article  Google Scholar 

  39. Ruhland MK, Loza AJ, Capietto AH, Luo XM, Knolhoff BL, Flanagan KC, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016;7:11762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arabpour M, Saghazadeh A, Rezaei N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cell-derived exosomes. Int Immunopharmacol. 2021;97:107823.

    Article  CAS  PubMed  Google Scholar 

  41. Chandra R, Karalis JD, Liu C, Murimwa GZ, Voth Park J, Heid CA, et al. The Colorectal Cancer Tumor Microenvironment and Its Impact on Liver and Lung Metastasis. Cancers. 2021;13:6206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tanaka H, Takebayashi S, Sakamoto A, Igata T, Nakatsu Y, Saitoh N, et al. The SETD8/PR-Set7 Methyltransferase Functions as a Barrier to Prevent Senescence-Associated Metabolic Remodeling. Cell Rep. 2017;18:2148–61.

    Article  CAS  PubMed  Google Scholar 

  43. Criscione SW, De Cecco M, Siranosian B, Zhang Y, Kreiling JA, Sedivy JM, et al. Reorganization of chromosome architecture in replicative cellular senescence. Science Adv. 2016;2:e1500882.

    Article  Google Scholar 

  44. Wu ZM, Shi Y, Lu MM, Song MS, Yu ZH, Wang JL, et al. METTL3 counteracts premature aging via m(6)A-dependent stabilization of MIS12 mRNA. Nucleic Acids Res. 2020;48:11083–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Q, Li X, Tang H, Jiang B, Dou Y, Gorospe M, et al. NSUN2-Mediated m5C Methylation and METTL3/METTL14-Mediated m6A Methylation Cooperatively Enhance p21 Translation. J Cell Biochem. 2017;118:2587–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu F, Zhang L, Lai C, Peng X, Yu S, Zhou C, et al. Dynamic Alteration Profile and New Role of RNA m6A Methylation in Replicative and H2O2-Induced Premature Senescence of Human Embryonic Lung Fibroblasts. Int J Mol Sci. 2022;23:9271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Munoz-Espin D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15:482–96.

    Article  CAS  PubMed  Google Scholar 

  48. Latres E, Malumbres M, Sotillo R, Martin J, Ortega S, Martin-Caballero J, et al. Limited overlapping roles of P15(INK4b) and P18(INK4c) cell cycle inhibitors in proliferation and tumorigenesis. EMBO J. 2000;19:3496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen X, Yu XT, Shen EJ. Overexpression of CDKN2B is involved in poor gastric cancer prognosis. Journal of Cellular Biochemistry. 2019;120:19825–31.

    Article  CAS  PubMed  Google Scholar 

  50. Wu Q, He Y, Liu X, Luo F, Jiang Y, Xiang M, et al. Cancer stem cell-like cells-derived exosomal CDKN2B-AS1 stabilizes CDKN2B to promote the growth and metastasis of thyroid cancer via TGF-beta1/Smad2/3 signaling. Exp Cell Res. 2022;419:113268.

    Article  CAS  PubMed  Google Scholar 

  51. De Braekeleer M, Douet-Guilbert N, De Braekeleer E. Prognostic impact of p15 gene aberrations in acute leukemia. Leuk Lymphoma. 2017;58:257–65.

    Article  PubMed  Google Scholar 

  52. Drexler HG. Review of alterations of the cyclin-dependent kinase inhibitor INK4 family genes p15, p16, p18 and p19 in human leukemia-lymphoma cells. Leukemia. 1998;12:845–59.

    Article  CAS  PubMed  Google Scholar 

  53. Milanovic M, Fan DNY, Belenki D, Dabritz JHM, Zhao Z, Yu Y, et al. Senescence-associated reprogramming promotes cancer stemness. Nature. 2018;553:96–100.

    Article  CAS  PubMed  Google Scholar 

  54. Gonzalez-Meljem JM, Haston S, Carreno G, Apps JR, Pozzi S, Stache C, et al. Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nat Commun. 2017;8:1819.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Di Mitri D, Toso A, Chen JJ, Sarti M, Pinton S, Jost TR, et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature. 2014;515:134–7.

    Article  PubMed  Google Scholar 

  56. Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22:75–95.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof Hao Liu at the Cancer Center of Guangzhou Medical University for plasmid donation, experimental skills and instrumental help.

Funding

This research was supported by the National Key Research and Development Program of China (No. 2022YFC2601800, and 2022YFC3401000), the National Natural Science Foundation of China (Nos. 32161143017, 82173833, 82372743, 82173126, 81973343, 82272658, 82373893, and 82022037), the Guangdong Basic and Applied Basic Research Foundation (Nos. 2023B1515040006, and 2021B1515230009), the Open Program of Shenzhen Bay Laboratory (No. SZBL202009051006), the Guangdong Provincial Key Laboratory of Construction Foundation (2023B1212060022), the Guangdong Provincial Natural Science Foundation (2019B151502063), the Sichuan Science and Technology Program (Nos. 2022JDRC0042, and 2022NSFSC0776), the Joint Research Foundation of Chengdu Medical College and the Seventh People’s Hospital (Grant Nos. 2022LHTD-02, 2021LHJYPJ-08 and 2022488), and the Shenzhen Bay Scholars Program.

Author information

Authors and Affiliations

Authors

Contributions

HS Wang, ZJ Chen, ZG Li, Q Peng, W He, and JX Li designed and initiated the study; Y Wu, F Chen, JW Zhou, K Zhong, and HR Wang performed experiments; HS Zhang, JN Li, LJ Tao, and YF Tian helped design the study and interpret the data; ZJ Chen and HS Wang wrote the paper.

Corresponding authors

Correspondence to Weiling He, Kun Zhang or Hongsheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhou, J., Wu, Y. et al. METTL3 promotes cellular senescence of colorectal cancer via modulation of CDKN2B transcription and mRNA stability. Oncogene 43, 976–991 (2024). https://doi.org/10.1038/s41388-024-02956-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-02956-y

Search

Quick links