Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stabilization of MOF (KAT8) by USP10 promotes esophageal squamous cell carcinoma proliferation and metastasis through epigenetic activation of ANXA2/Wnt signaling

Abstract

Dysregulation of MOF (also known as MYST1, KAT8), a highly conserved H4K16 acetyltransferase, plays important roles in human cancers. However, its expression and function in esophageal squamous cell carcinoma (ESCC) remain unknown. Here, we report that MOF is highly expressed in ESCC tumors and predicts a worse prognosis. Depletion of MOF in ESCC significantly impedes tumor growth and metastasis both in vitro and in vivo, whereas ectopic expression of MOF but not catalytically inactive mutant (MOF-E350Q) promotes ESCC progression, suggesting that MOF acetyltransferase activity is crucial for its oncogenic activity. Further analysis reveals that USP10, a deubiquitinase highly expressed in ESCC, binds to and deubiquitinates MOF at lysine 410, which protects it from proteosome-dependent protein degradation. MOF stabilization by USP10 promotes H4K16ac enrichment in the ANXA2 promoter to stimulate ANXA2 transcription in a JUN-dependent manner, which subsequently activates Wnt/β-Catenin signaling to facilitate ESCC progression. Our findings highlight a novel USP10/MOF/ANXA2 axis as a promising therapeutic target for ESCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MOF protein is highly expressed in ESCC and predicts a worse prognosis.
Fig. 2: MOF plays an oncogenic role on ESCC growth and metastasis in vitro and in vivo.
Fig. 3: USP10 binds to and stabilizes MOF protein via deubiquitination.
Fig. 4: Dysregulation of USP10 in ESCC promotes tumor progression.
Fig. 5: MOF is essential for USP10-mediated tumor progression of ESCC.
Fig. 6: MOF activates ANXA2 transcription in a JUN-dependent manner.
Fig. 7: MOF promoted the proliferation, migration and invasion of ESCC cells via upregulating ANXA2.
Fig. 8: MOF accelerated ESCC cell proliferation, migration and invasion through activating Wnt signaling.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. RNA-Sequencing data produced in this study have been deposited in Gene Expression Omnibus (GEO) (GSE241066). Uncropped and full-length western blots are present in Supplementary Materials.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Abnet CC, Arnold M, Wei WQ. Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 2018;154:360–73.

    Article  PubMed  Google Scholar 

  3. Malhotra GK, Yanala U, Ravipati A, Follet M, Vijayakumar M, Are C. Global trends in esophageal cancer. J Surg Oncol. 2017;115:564–79.

    Article  PubMed  Google Scholar 

  4. Huang J, Koulaouzidis A, Marlicz W, Lok V, Chu C, Ngai CH, et al. Global burden, risk factors, and trends of esophageal cancer: an analysis of cancer registries from 48 countries. Cancers. 2021;13:141.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nieman DR, Peters JH. Treatment strategies for esophageal cancer. Gastroenterol Clin North Am. 2013;42:187–97.

    Article  PubMed  Google Scholar 

  6. Yang YM, Hong P, Xu WW, He QY, Li B. Advances in targeted therapy for esophageal cancer. Signal Transduct Target Ther. 2020;5:229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kelly RJ. Emerging multimodality approaches to treat localized esophageal cancer. J Natl Compr Canc Netw. 2019;17:1009–14.

    Article  CAS  PubMed  Google Scholar 

  8. Chen QY, Costa M, Sun H. Structure and function of histone acetyltransferase MOF. AIMS Biophys. 2015;2:555–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Radzisheuskaya A, Shliaha PV, Grinev VV, Shlyueva D, Damhofer H, Koche R, et al. Complex-dependent histone acetyltransferase activity of KAT8 determines its role in transcription and cellular homeostasis. Mol Cell. 2021;81:1749–65.e1748.

    Article  CAS  PubMed  Google Scholar 

  10. Thomas T, Voss AK. The diverse biological roles of MYST histone acetyltransferase family proteins. Cell Cycle. 2007;6:696–704.

    Article  CAS  PubMed  Google Scholar 

  11. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 2006;311:844–7.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Urdinguio RG, Lopez V, Bayon GF, Diaz de la Guardia R, Sierra MI, Garcia-Torano E, et al. Chromatin regulation by Histone H4 acetylation at Lysine 16 during cell death and differentiation in the myeloid compartment. Nucleic Acids Res. 2019;47:5016–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, et al. Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem. 2010;285:4268–72.

    Article  CAS  PubMed  Google Scholar 

  14. Sheikh BN, Guhathakurta S, Akhtar A. The non-specific lethal (NSL) complex at the crossroads of transcriptional control and cellular homeostasis. EMBO Rep. 2019;20:e47630.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao X, Su J, Wang F, Liu D, Ding J, Yang Y, et al. Crosstalk between NSL histone acetyltransferase and MLL/SET complexes: NSL complex functions in promoting histone H3K4 di-methylation activity by MLL/SET complexes. PLoS Genet. 2013;9:e1003940.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ravens S, Fournier M, Ye T, Stierle M, Dembele D, Chavant V, et al. Mof-associated complexes have overlapping and unique roles in regulating pluripotency in embryonic stem cells and during differentiation. Elife. 2014;3:e02104.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Singh M, Bacolla A, Chaudhary S, Hunt CR, Pandita S, Chauhan R, et al. Histone acetyltransferase MOF orchestrates outcomes at the crossroad of oncogenesis, DNA damage response, proliferation, and stem cell development. Mol Cell Biol. 2020;40:e00232–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37:391–400.

    Article  CAS  PubMed  Google Scholar 

  19. Cai M, Hu Z, Liu J, Gao J, Tan M, Zhang D, et al. Expression of hMOF in different ovarian tissues and its effects on ovarian cancer prognosis. Oncol Rep. 2015;33:685–92.

    Article  CAS  PubMed  Google Scholar 

  20. Cao L, Zhu L, Yang J, Su J, Ni J, Du Y, et al. Correlation of low expression of hMOF with clinicopathological features of colorectal carcinoma, gastric cancer and renal cell carcinoma. Int J Oncol. 2014;44:1207–14.

    Article  CAS  PubMed  Google Scholar 

  21. Liu N, Zhang R, Zhao X, Su J, Bian X, Ni J, et al. A potential diagnostic marker for ovarian cancer: Involvement of the histone acetyltransferase, human males absent on the first. Oncol Lett. 2013;6:393–400.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pfister S, Rea S, Taipale M, Mendrzyk F, Straub B, Ittrich C, et al. The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer. 2008;122:1207–13.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Zhang R, Wu D, Lu Z, Sun W, Cai Y, et al. Epigenetic change in kidney tumor: downregulation of histone acetyltransferase MYST1 in human renal cell carcinoma. J Exp Clin Cancer Res. 2013;32:8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang J, Liu H, Pan H, Yang Y, Huang G, Yang Y, et al. The histone acetyltransferase hMOF suppresses hepatocellular carcinoma growth. Biochem Biophys Res Commun. 2014;452:575–80.

    Article  CAS  PubMed  Google Scholar 

  25. Song J, Chun S-M, Lee J, Kim D, Kim YH, Jang S. The histone Acetyltransferase hMOF is Overexpressed in Non-small Cell Lung Carcinoma. The Korean Journal of Pathology. 2011;45:386.

    Article  Google Scholar 

  26. Chen Z, Ye X, Tang N, Shen S, Li Z, Niu X, et al. The histone acetylranseferase hMOF acetylates Nrf2 and regulates anti-drug responses in human non-small cell lung cancer. Br J Pharmacol. 2014;171:3196–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao L, Wang DL, Liu Y, Chen S, Sun FL. Histone acetyltransferase hMOF promotes S phase entry and tumorigenesis in lung cancer. Cell Signal. 2013;25:1689–98.

    Article  CAS  PubMed  Google Scholar 

  28. Pote N, Cros J, Laouirem S, Raffenne J, Negrao M, Albuquerque M, et al. The histone acetyltransferase hMOF promotes vascular invasion in hepatocellular carcinoma. Liver Int. 2020;40:956–67.

    Article  CAS  PubMed  Google Scholar 

  29. Qi Y, Tan M, Zheng M, Jin S, Wang H, Liu J, et al. Estrogen/estrogen receptor promotes the proliferation of endometrial carcinoma cells by enhancing hMOF expression. Jpn J Clin Oncol. 2020;50:241–53.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Valerio DG, Xu H, Chen CW, Hoshii T, Eisold ME, Delaney C, et al. Histone acetyltransferase activity of MOF Is required for MLL-AF9 leukemogenesis. Cancer Res. 2017;77:1753–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goldman MJ, Craft B, Hastie M, Repecka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38:675–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang J, Wan B, Wu L, Yang Y, Dou Y, Lei M. Structural insight into the regulation of MOF in the male-specific lethal complex and the non-specific lethal complex. Cell Res. 2012;22:1078–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kadlec J, Hallacli E, Lipp M, Holz H, Sanchez-Weatherby J, Cusack S, et al. Structural basis for MOF and MSL3 recruitment into the dosage compensation complex by MSL1. Nat Struct Mol Biol. 2011;18:142–9.

    Article  CAS  PubMed  Google Scholar 

  34. Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, et al. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell. 2006;21:811–23.

    Article  CAS  PubMed  Google Scholar 

  35. Smith ER, Cayrou C, Huang R, Lane WS, Cote J, Lucchesi JC. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol. 2005;25:9175–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin Z, Yang H, Tan C, Li J, Liu Z, Quan Q, et al. USP10 antagonizes c-Myc transcriptional activation through SIRT6 stabilization to suppress tumor formation. Cell Rep. 2013;5:1639–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan J, Luo K, Zhang L, Cheville JC, Lou Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell. 2010;140:384–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512–20.

    Article  CAS  PubMed  Google Scholar 

  39. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma S, Lu CC, Yang LY, Wang JJ, Wang BS, Cai HQ, et al. ANXA2 promotes esophageal cancer progression by activating MYC-HIF1A-VEGF axis. J Exp Clin Cancer Res. 2018;37:183.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Farre D, Roset R, Huerta M, Adsuara JE, Rosello L, Alba MM, et al. Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 2003;31:3651–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18:333–4.

    Article  CAS  PubMed  Google Scholar 

  44. Moreau K, Ghislat G, Hochfeld W, Renna M, Zavodszky E, Runwal G, et al. Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nat Commun. 2015;6:8045.

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Liu Y, Long Y, Xing Z, Zhang D. C-Jun recruits the NSL complex to regulate its target gene expression by modulating H4K16 acetylation and promoting the release of the repressive NuRD complex. Oncotarget. 2015;6:14497–506.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liu Y, Li H, Ban Z, Nai M, Yang L, Chen Y, et al. Annexin A2 inhibition suppresses ovarian cancer progression via regulating beta-catenin/EMT. Oncol Rep. 2017;37:3643–50.

    Article  CAS  PubMed  Google Scholar 

  47. Tang T, Guo C, Xia T, Zhang R, Zen K, Pan Y, et al. LncCCAT1 promotes breast cancer stem cell function through activating WNT/beta-catenin signaling. Theranostics. 2019;9:7384–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yan X, Zhang D, Wu W, Wu S, Qian J, Hao Y, et al. Mesenchymal stem cells promote hepatocarcinogenesis via lncRNA-MUF interaction with ANXA2 and miR-34a. Cancer Res. 2017;77:6704–16.

    Article  CAS  PubMed  Google Scholar 

  49. Li Y, Yang HX, Luo RZ, Zhang Y, Li M, Wang X, et al. High expression of p300 has an unfavorable impact on survival in resectable esophageal squamous cell carcinoma. Ann Thorac Surg. 2011;91:1531–8.

    Article  PubMed  Google Scholar 

  50. Wang X, Jia Y, Deng H, Liu Y, Liu Y. Intratumoral heterogeneity of esophageal squamous cell carcinoma and its clinical significance. Pathol Res Pract. 2019;215:308–14.

    Article  CAS  PubMed  Google Scholar 

  51. He LR, Liu MZ, Li BK, Rao HL, Deng HX, Guan XY, et al. Overexpression of AIB1 predicts resistance to chemoradiotherapy and poor prognosis in patients with primary esophageal squamous cell carcinoma. Cancer Sci. 2009;100:1591–6.

    Article  CAS  PubMed  Google Scholar 

  52. Li L, Wei P, Zhang MH, Zhang W, Ma Y, Fang X, et al. Roles of the AIB1 protein in the proliferation and transformation of human esophageal squamous cell carcinoma. Genet Mol Res. 2015;14:10376–83.

    Article  CAS  PubMed  Google Scholar 

  53. Xu FP, Liu YH, Luo XL, Zhang F, Zhou HY, Ge Y, et al. Overexpression of SRC-3 promotes esophageal squamous cell carcinoma aggressiveness by enhancing cell growth and invasiveness. Cancer Med. 2016;5:3500–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu FP, Xie D, Wen JM, Wu HX, Liu YD, Bi J, et al. SRC-3/AIB1 protein and gene amplification levels in human esophageal squamous cell carcinomas. Cancer Lett. 2007;245:69–74.

    Article  CAS  PubMed  Google Scholar 

  55. Xue L, Hou J, Wang Q, Yao L, Xu S, Ge D. RNAi screening identifies HAT1 as a potential drug target in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7:3898–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Anselmino N, Bizzotto J, Sanchis P, Lage-Vickers S, Ortiz E, Valacco P, et al. HO-1 interactors involved in the colonization of the bone niche: role of ANXA2 in prostate cancer progression. Biomolecules. 2020;10:467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fan Y, Si W, Ji W, Wang Z, Gao Z, Tian R, et al. Rack1 mediates tyrosine phosphorylation of Anxa2 by Src and promotes invasion and metastasis in drug-resistant breast cancer cells. Breast Cancer Res. 2019;21:66.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fei F, Liu K, Li C, Du J, Wei Z, Li B, et al. Molecular mechanisms by which S100A4 regulates the migration and invasion of PGCCs with their daughter cells in human colorectal cancer. Front Oncol. 2020;10:182.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mao L, Yuan W, Cai K, Lai C, Huang C, Xu Y, et al. EphA2-YES1-ANXA2 pathway promotes gastric cancer progression and metastasis. Oncogene. 2021;40:3610–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sharma MC. Annexin A2 (ANX A2): An emerging biomarker and potential therapeutic target for aggressive cancers. Int J Cancer. 2019;144:2074–81.

    Article  CAS  PubMed  Google Scholar 

  61. Wang J, He Z, Liu X, Xu J, Jiang X, Quan G, et al. LINC00941 promotes pancreatic cancer malignancy by interacting with ANXA2 and suppressing NEDD4L-mediated degradation of ANXA2. Cell Death Dis. 2022;13:718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zehender A, Li YN, Lin NY, Stefanica A, Nuchel J, Chen CW, et al. TGFbeta promotes fibrosis by MYST1-dependent epigenetic regulation of autophagy. Nat Commun. 2021;12:4404.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Schunter S, Villa R, Flynn V, Heidelberger JB, Classen AK, Beli P, et al. Ubiquitylation of the acetyltransferase MOF in Drosophila melanogaster. PLoS One. 2017;12:e0177408.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Villa R, Forne I, Muller M, Imhof A, Straub T, Becker PB. MSL2 combines sensor and effector functions in homeostatic control of the Drosophila dosage compensation machinery. Mol Cell. 2012;48:647–54.

    Article  CAS  PubMed  Google Scholar 

  65. Tao L, Liu X, Jiang X, Zhang K, Wang Y, Li X, et al. USP10 as a potential therapeutic target in human cancers. Genes. 2022;13:831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. He Y, Jiang S, Mao C, Zheng H, Cao B, Zhang Z, et al. The deubiquitinase USP10 restores PTEN activity and inhibits non-small cell lung cancer cell proliferation. J Biol Chem. 2021;297:101088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun J, Li T, Zhao Y, Huang L, Sun H, Wu H, et al. USP10 inhibits lung cancer cell growth and invasion by upregulating PTEN. Mol Cell Biochem. 2018;441:1–7.

    Article  CAS  PubMed  Google Scholar 

  68. Wang X, Xia S, Li H, Wang X, Li C, Chao Y, et al. The deubiquitinase USP10 regulates KLF4 stability and suppresses lung tumorigenesis. Cell Death Differ. 2020;27:1747–64.

    Article  CAS  PubMed  Google Scholar 

  69. Shen C, Li J, Zhang Q, Tao Y, Li R, Ma Z, et al. LncRNA GASAL1 promotes hepatocellular carcinoma progression by up-regulating USP10-stabilized PCNA. Exp Cell Res. 2022;415:112973.

    Article  CAS  PubMed  Google Scholar 

  70. Zhu H, Yan F, Yuan T, Qian M, Zhou T, Dai X, et al. USP10 promotes proliferation of hepatocellular carcinoma by deubiquitinating and stabilizing YAP/TAZ. Cancer Res. 2020;80:2204–16.

    Article  CAS  PubMed  Google Scholar 

  71. Cao YF, Xie L, Tong BB, Chu MY, Shi WQ, Li X, et al. Targeting USP10 induces degradation of oncogenic ANLN in esophageal squamous cell carcinoma. Cell Death Differ. 2023;30:527–43.

    Article  CAS  PubMed  Google Scholar 

  72. Ma ZQ, Feng YT, Guo K, Liu D, Shao CJ, Pan MH, et al. Melatonin inhibits ESCC tumor growth by mitigating the HDAC7/beta-catenin/c-Myc positive feedback loop and suppressing the USP10-maintained HDAC7 protein stability. Mil Med Res. 2022;9:54.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rice TW, Ishwaran H, Ferguson MK, Blackstone EH, Goldstraw P. Cancer of the esophagus and esophagogastric junction: an eighth edition staging primer. J Thorac Oncol. 2017;12:36–42.

    Article  PubMed  Google Scholar 

  74. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun R, Liu Z, Qiu B, Chen T, Li Z, Zhang X, et al. Annexin10 promotes extrahepatic cholangiocarcinoma metastasis by facilitating EMT via PLA2G4A/PGE2/STAT3 pathway. EBioMedicine. 2019;47:142–55.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Li P, Zhang X, Murphy AJ, Costa M, Zhao X, Sun H. Downregulation of hedgehog-interacting protein (HHIP) contributes to hexavalent chromium-induced malignant transformation of human bronchial epithelial cells. Carcinogenesis. 2021;42:136–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Jian Zhu (Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China) for his valuable suggestions during the discussion of this project.

Funding

The project was financially supported by grants from the Special Construction Project Fund for Taishan Mountain Scholars of Shandong Province (to XZ), the Jinan Medicine Research Program (to XZ), and the National Natural Science Foundation of China (grants 32070712 to YZou).

Author information

Authors and Affiliations

Authors

Contributions

XZ, HSun, and PL conceived and designed this project. LYang performed most of the experiments. FL, YZhu, HSui, and FG helped with biochemistry experiments. LYe, YZhao, and LL helped with animal experiments and collected clinical samples. ZT and YZou provided the support of experimental techniques. PL, LYang, and SP analyzed all data and performed the visualization. LL made the mechanism diagram. PL, SP, AL, and HSun wrote the original draft. PL, SP, AL, HSun, MC, YZou, and XZ reviewed and edited the manuscript. XZ supervised all process of this study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hong Sun or Xiaogang Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of The Second Hospital of Shandong University (KYLL-2022P0233) and the Ethical Committee for Animal Experimentation of The Second Hospital of Shandong University (KYLL-2022A0233).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Yang, L., Park, S.Y. et al. Stabilization of MOF (KAT8) by USP10 promotes esophageal squamous cell carcinoma proliferation and metastasis through epigenetic activation of ANXA2/Wnt signaling. Oncogene 43, 899–917 (2024). https://doi.org/10.1038/s41388-024-02955-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-02955-z

Search

Quick links