Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PARP1-stabilised FOXQ1 promotes ovarian cancer progression by activating the LAMB3/WNT/β-catenin signalling pathway

Abstract

Metastasis is an important factor that causes ovarian cancer (OC) to become the most lethal malignancy of the female reproductive system, but its molecular mechanism is not fully understood. In this study, through bioinformatics analysis, as well as analysis of tissue samples and clinicopathological characteristics and prognosis of patients in our centre, it was found that Forkhead box Q1 (FOXQ1) was correlated with metastasis and prognosis of OC. Through cell function experiments and animal experiments, the results show that FOXQ1 can promote the progression of ovarian cancer in vivo and in vitro. Through RNA-seq, chromatin immunoprecipitation sequencing (ChIP-seq), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), Western blotting (WB), quantitative real-time polymerase chain reaction (qRT‒PCR), immunohistochemistry (IHC), luciferase assay, and ChIP-PCR, it was demonstrated that FOXQ1 can mediate the WNT/β-catenin pathway by targeting the LAMB promoter region. Through coimmunoprecipitation (Co-IP), mass spectrometry (MS), ubiquitination experiments, and immunofluorescence (IF), the results showed that PARP1 could stabilise FOXQ1 expression via the E3 ubiquitin ligase Hsc70-interacting protein (CHIP). Finally, the whole mechanism pathway was verified by animal drug combination experiments and clinical specimen prognosis analysis. In summary, our results suggest that PARP1 can promote ovarian cancer progression through the LAMB3/WNT/β-catenin pathway by stabilising FOXQ1 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FOXQ1 is overexpressed in OC and clinically associated with patient prognosis.
Fig. 2: FOXQ1 promotes OC cell proliferation in vitro and in vivo.
Fig. 3: FOXQ1 promotes OC migration, invasion and metastasis in vitro and in vivo.
Fig. 4: FOXQ1 promotes LAMB3 transcription by binding to its promoter region.
Fig. 5: LAMB3 is overexpressed in OC and clinically associated with patient prognosis.
Fig. 6: The oncogenic effects of FOXQ1 are mediated via the LAMB3/WNT//β-catenin pathway.
Fig. 7: PARP1 can inhibit the ubiquitination-mediated degradation of FOXQ1 by targeting the E3 ubiquitin ligase CHIP.
Fig. 8: PARP1 is overexpressed in OC and clinically associated with patient prognosis.
Fig. 9: The PARP1/FOXQ1/LAMB3/WNT/β-catenin signalling pathway was supported by animal models and clinical samples.

Similar content being viewed by others

Data availability

The data that support the results of this study are available from the corresponding author upon reasonable request.

References

  1. Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY. Ovarian cancer. Nat Rev Dis Prim. 2016;2:16061.

    Article  PubMed  Google Scholar 

  2. Christie EL, Bowtell DDL. Acquired chemotherapy resistance in ovarian cancer. Ann Oncol. 2017;28:viii13–viii15.

    Article  CAS  PubMed  Google Scholar 

  3. O’Malley DM. New therapies for ovarian cancer. J Natl Compr Canc Netw. 2019;17:619–21.

    PubMed  Google Scholar 

  4. Pujade-Lauraine E, Banerjee S, Pignata S. Management of platinum-resistant, relapsed epithelial ovarian cancer and new drug perspectives. J Clin Oncol. 2019;37:2437–48.

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell AV, Wu L, James Block C, Zhang M, Hackett J, Craig DB, et al. FOXQ1 recruits the MLL complex to activate transcription of EMT and promote breast cancer metastasis. Nat Commun. 2022;13:6548.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun HT, Cheng SX, Tu Y, Li XH, Zhang S. FoxQ1 promotes glioma cells proliferation and migration by regulating NRXN3 expression. PLoS One. 2013;8:e55693.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xiang L, Zheng J, Zhang M, Ai T, Cai B. FOXQ1 promotes the osteogenic differentiation of bone mesenchymal stem cells via Wnt/beta-catenin signalling by binding with ANXA2. Stem Cell Res Ther. 2020;11:403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luo Y, Wang J, Wang F, Liu X, Lu J, Yu X, et al. Foxq1 promotes metastasis of nasopharyngeal carcinoma by inducing vasculogenic mimicry via the EGFR signalling pathway. Cell Death Dis. 2021;12:411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu JY, Wu XY, Wu GN, Liu FK, Yao XQ. FOXQ1 promotes cancer metastasis by PI3K/AKT signalling regulation in colorectal carcinoma. Am J Transl Res. 2017;9:2207–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pizzolato G, Moparthi L, Soderholm S, Cantu C, Koch S. The oncogenic transcription factor FOXQ1 is a differential regulator of Wnt target genes. J Cell Sci. 2022;135:jcs260082.

  11. Bagati A, Bianchi-Smiraglia A, Moparthy S, Kolesnikova K, Fink EE, Lipchick BC, et al. Melanoma suppressor functions of the carcinoma oncogene FOXQ1. Cell Rep. 2017;20:2820–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu Z, Song J, Guo Y, Huang Z, Chen X, Dang X, et al. LAMB3 promotes tumour progression through the AKT-FOXO3/4 axis and is transcriptionally regulated by the BRD2/acetylated ELK4 complex in colorectal cancer. Oncogene. 2020;39:4666–80.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang H, Pan YZ, Cheung M, Cao M, Yu C, Chen L, et al. LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviours in pancreatic cancer by regulating the PI3K/Akt signalling pathway. Cell Death Dis. 2019;10:230.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu L, Jung SN, Oh C, Lee K, Won HR, Chang JW, et al. LAMB3 is associated with disease progression and cisplatin cytotoxic sensitivity in head and neck squamous cell carcinoma. Eur J Surg Oncol. 2019;45:359–65.

    Article  PubMed  Google Scholar 

  15. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li C, Tang Z, Zhang W, Ye Z, Liu F. GEPIA2021: integrating multiple deconvolution-based analysis into GEPIA. Nucleic Acids Res. 2021;49:W242–W246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xia L, Huang W, Tian D, Zhang L, Qi X, Chen Z, et al. Forkhead box Q1 promotes hepatocellular carcinoma metastasis by transactivating ZEB2 and VersicanV1 expression. Hepatology. 2014;59:958–73.

    Article  CAS  PubMed  Google Scholar 

  18. Duska LR, Kohn EC. The new classifications of ovarian, fallopian tube, and primary peritoneal cancer and their clinical implications. Ann Oncol. 2017;28:viii8–viii12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang J, Li Y, Liu H, Zhang J, Wang J, Xia J, et al. Genome-wide CRISPR/Cas9 library screen identifies PCMT1 as a critical driver of ovarian cancer metastasis. J Exp Clin Cancer Res. 2022;41:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jung SN, Lim HS, Liu L, Chang JW, Lim YC, Rha KS, et al. LAMB3 mediates metastatic tumour behaviour in papillary thyroid cancer by regulating c-MET/Akt signals. Sci Rep. 2018;8:2718.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Choi JR, Shin KS, Choi CY, Kang SJ. PARP1 regulates the protein stability and proapoptotic function of HIPK2. Cell Death Dis. 2016;7:e2438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu K, Wu W, Li Y, Lin L, Chen D, Yan H et al. Poly(ADP-ribosyl)ation of BRD7 by PARP1 confers resistance to DNA-damaging chemotherapeutic agents. EMBO Rep. 2019;20:e46166.

  23. Liu Y, Zhou Y, Zhang P, Li X, Duan C, Zhang C. CHIP-mediated CIB1 ubiquitination regulated epithelial-mesenchymal transition and tumour metastasis in lung adenocarcinoma. Cell Death Differ. 2021;28:1026–40.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang P, Li C, Li H, Yuan L, Dai H, Peng Z, et al. Ubiquitin ligase CHIP regulates OTUD3 stability and suppresses tumour metastasis in lung cancer. Cell Death Differ. 2020;27:3177–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu HH, Wang B, Armstrong SR, Abuetabh Y, Leng S, Roa WHY, et al. Hsp70 acts as a fine-switch that controls E3 ligase CHIP-mediated TAp63 and DeltaNp63 ubiquitination and degradation. Nucleic Acids Res. 2021;49:2740–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Zhang Y, Yao Z, Li S, Yin Z, Xu M. Forkhead box Q1: A key player in the pathogenesis of tumours (Review). Int J Oncol. 2016;49:51–58.

    Article  CAS  PubMed  Google Scholar 

  27. Pei Y, Wang P, Liu H, He F, Ming L. FOXQ1 promotes oesophageal cancer proliferation and metastasis by negatively modulating CDH1. Biomed Pharmacother. 2015;74:89–94.

    Article  CAS  PubMed  Google Scholar 

  28. Peng XH, Huang HR, Lu J, Liu X, Zhao FP, Zhang B, et al. MiR-124 suppresses tumour growth and metastasis by targeting Foxq1 in nasopharyngeal carcinoma. Mol Cancer. 2014;13:186.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang C, Zhang W, Xing S, Wang Z, Wang J, Qu J. MiR-342-3p inhibits cell migration and invasion through suppressing forkhead box protein Q1 in ovarian carcinoma. Anticancer Drugs. 2019;30:917–24.

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Zhu X. Tumour Forkhead Box Q1 Is Elevated, Correlates with Increased Tumour Size, International Federation of Gynecology and Obstetrics Stage but Worse Overall Survival in Epithelial Ovarian Cancer Patients. Cancer Biother Radiopharm. 2022;37:837–42.

    CAS  PubMed  Google Scholar 

  31. Gao M, Shih IeM, Wang TL. The role of forkhead box Q1 transcription factor in ovarian epithelial carcinomas. Int J Mol Sci. 2012;13:13881–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dong Q, Yan L, Xu Q, Hu X, Yang Y, Zhu R, et al. Pancancer analysis of forkhead box Q1 as a potential prognostic and immunological biomarker. Front Genet. 2022;13:944970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Golson ML, Kaestner KH. Fox transcription factors: from development to disease. Development. 2016;143:4558–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lam EW, Brosens JJ, Gomes AR, Koo CY. Forkhead box proteins: tuning forks for transcriptional harmony. Nat Rev Cancer. 2013;13:482–95.

    Article  CAS  PubMed  Google Scholar 

  35. Peng X, Luo Z, Kang Q, Deng D, Wang Q, Peng H, et al. FOXQ1 mediates the crosstalk between TGF-beta and Wnt signalling pathways in the progression of colorectal cancer. Cancer Biol Ther. 2015;16:1099–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nusse R, Clevers H. Wnt/beta-catenin signalling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    Article  CAS  PubMed  Google Scholar 

  37. Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, et al. Wnt/beta-catenin signalling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6:307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. beta-Catenin signalling in hepatocellular carcinoma. J Clin Invest. 2022; 132:e154515.

  39. Wang P, Lv C, Zhang T, Liu J, Yang J, Guan F, et al. FOXQ1 regulates senescence-associated inflammation via activation of SIRT1 expression. Cell Death Dis. 2017;8:e2946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang J, Liu Y, Zhang J, Cui X, Li G, Wang J, et al. FOXQ1 promotes gastric cancer metastasis through upregulation of Snail. Oncol Rep. 2016;35:3607–13.

    Article  CAS  PubMed  Google Scholar 

  41. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huang P, Yan R, Zhang X, Wang L, Ke X, Qu Y. Activating Wnt/beta-catenin signalling pathway for disease therapy: Challenges and opportunities. Pharm Ther. 2019;196:79–90.

    Article  CAS  Google Scholar 

  43. Pietila EA, Gonzalez-Molina J, Moyano-Galceran L, Jamalzadeh S, Zhang K, Lehtinen L, et al. Coevolution of matrisome and adaptive adhesion dynamics drives ovarian cancer chemoresistance. Nat Commun. 2021;12:3904.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18:610–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mateo J, Lord CJ, Serra V, Tutt A, Balmana J, Castroviejo-Bermejo M, et al. A decade of clinical development of PARP inhibitors in perspective. Ann Oncol. 2019;30:1437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sessa C. Update on PARP1 inhibitors in ovarian cancer. Ann Oncol. 2011;22:viii72–viii76.

    Article  PubMed  Google Scholar 

  47. Franz A, Coscia F, Shen C, Charaoui L, Mann M, Sander C. Molecular response to PARP1 inhibition in ovarian cancer cells as determined by mass spectrometry based proteomics. J Ovarian Res. 2021;14:140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Noordermeer SM, van Attikum H. PARP inhibitor resistance: a tug-of-war in BRCA-mutated cells. Trends Cell Biol. 2019;29:820–34.

    Article  CAS  PubMed  Google Scholar 

  49. Cong K, Peng M, Kousholt AN, Lee WTC, Lee S, Nayak S, et al. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol Cell. 2021;81:3128–44.e3127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gatti M, Imhof R, Huang Q, Baudis M, Altmeyer M. The ubiquitin ligase TRIP12 limits PARP1 trapping and constrains PARP inhibitor efficiency. Cell Rep. 2020;32:107985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 2016;375:2154–64.

    Article  CAS  PubMed  Google Scholar 

  52. Banerjee S, Moore KN, Colombo N, Scambia G, Kim BG, Oaknin A, et al. Maintenance olaparib for patients with newly diagnosed advanced ovarian cancer and a BRCA mutation (SOLO1/GOG 3004): 5-year follow-up of a randomized, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2021;22:1721–31.

    Article  CAS  PubMed  Google Scholar 

  53. Mirza MR, Coleman RL, Gonzalez-Martin A, Moore KN, Colombo N, Ray-Coquard I, et al. The forefront of ovarian cancer therapy: update on PARP inhibitors. Ann Oncol. 2020;31:1148–59.

    Article  CAS  PubMed  Google Scholar 

  54. Tattersall A, Ryan N, Wiggans AJ, Rogozinska E, Morrison J. Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Cochrane Database Syst Rev. 2022;2:CD007929.

    PubMed  Google Scholar 

  55. Caeiro C, Leao I, Oliveira I, Sousa I, Andre T. Recurrent ovarian cancer with BRCAness phenotype: a treatment challenge. Adv Ther. 2022;39:5289–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ledermann JA, Drew Y, Kristeleit RS. Homologous recombination deficiency and ovarian cancer. Eur J Cancer. 2016;60:49–58.

    Article  CAS  PubMed  Google Scholar 

  57. D’Andrea AD. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair. 2018;71:172–6.

    Article  PubMed  Google Scholar 

  58. Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med. 2018;379:2495–505.

    Article  CAS  PubMed  Google Scholar 

  59. Kaur A, Lim JYS, Sepramaniam S, Patnaik S, Harmston N, Lee MA, et al. WNT inhibition creates a BRCA-like state in Wnt-addicted cancer. EMBO Mol Med. 2021;13:e13349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Glinsmann-Gibson B, Wisner L, Stanton M, Larsen B, Rimsza L, Maguire A. Recommendations for tissue microarray construction and quality assurance. Appl Immunohistochem Mol Morphol. 2020;28:325–30.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wu J, Guo Q, Zhu J, Wu Y, Wang S, Liang S, et al. Developing a nomogram for preoperative prediction of cervical cancer lymph node metastasis by multiplex immunofluorescence. BMC Cancer. 2023;23:485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu J, Wu Y, Guo Q, Chen S, Wang S, Wu X, et al. SPOP promotes cervical cancer progression by inducing the movement of PD-1 away from PD-L1 in spatial localization. J Transl Med. 2022;20:384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin K, Hu K, Chen Q, Wu J. The function and immune role of cuproptosis associated hub gene in Barrett’s oesophagus and oesophageal adenocarcinoma. Biosci Trends. 2023;17:381–92.

  64. Specht E, Kaemmerer D, Sanger J, Wirtz RM, Schulz S, Lupp A. Comparison of immunoreactive score, HER2/neu score and H score for the immunohistochemical evaluation of somatostatin receptors in bronchopulmonary neuroendocrine neoplasms. Histopathology. 2015;67:368–77.

    Article  PubMed  Google Scholar 

  65. Wu Y, Guo Q, Ju X, Hu Z, Xia L, Deng Y, et al. HNRNPH1-stabilized LINC00662 promotes ovarian cancer progression by activating the GRP78/p38 pathway. Oncogene. 2021;40:4770–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang S, Li J, Xie J, Liu F, Duan Y, Wu Y, et al. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin beta4/SNAI1/SIRT3 signalling pathway. Oncogene. 2018;37:4164–80.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang L, Cheng H, Yue Y, Li S, Zhang D, He R. H19 knockdown suppresses proliferation and induces apoptosis by regulating miR-148b/WNT/beta-catenin in ox-LDL -stimulated vascular smooth muscle cells. J Biomed Sci. 2018;25:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu F, Feng XX, Zhu SL, Huang HY, Chen YD, Pan YF, et al. Sonic Hedgehog signalling pathway mediates proliferation and migration of fibroblast-like synoviocytes in rheumatoid arthritis via MAPK/ERK signalling pathway. Front Immunol. 2018;9:2847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mascharak S, Talbott HE, Januszyk M, Griffin M, Chen K, Davitt MF, et al. Multiomic analysis reveals divergent molecular events in scarring and regenerative wound healing. Cell Stem Cell. 2022;29:315–27.e316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Monika P, Chandraprabha MN, Rangarajan A, Waiker PV, Chidambara Murthy KN. Challenges in healing wound: role of complementary and alternative medicine. Front Nutr. 2021;8:791899.

    Article  PubMed  Google Scholar 

  71. Liu Z, Wang Y, Dou C, Xu M, Sun L, Wang L, et al. Hypoxia-induced upregulation of VASP promotes invasiveness and metastasis of hepatocellular carcinoma. Theranostics. 2018;8:4649–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang P, Li J, Peng C, Tan Y, Chen R, Peng W, et al. TCONS_00012883 promotes proliferation and metastasis via DDX3/YY1/MMP1/PI3K-AKT axis in colorectal cancer. Clin Transl Med. 2020;10:e211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gonsalves FC, Klein K, Carson BB, Katz S, Ekas LA, Evans S, et al. An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signalling pathway. Proc Natl Acad Sci USA. 2011;108:5954–63.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Santiago-O’Farrill JM, Weroha SJ, Hou X, Oberg AL, Heinzen EP, Maurer MJ, et al. Poly(adenosine diphosphate ribose) polymerase inhibitors induce autophagy-mediated drug resistance in ovarian cancer cells, xenografts, and patient-derived xenograft models. Cancer. 2020;126:894–907.

    Article  PubMed  Google Scholar 

  75. Barral A, Pozo G, Ducrot L, Papadopoulos GL, Sauzet S, Oldfield AJ, et al. SETDB1/NSD-dependent H3K9me3/H3K36me3 dual heterochromatin maintains gene expression profiles by bookmarking poised enhancers. Mol Cell. 2022;82:816–32.e812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lv LL, Feng Y, Wu M, Wang B, Li ZL, Zhong X, et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ. 2020;27:210–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported, in part, by grants from the National Natural Science Foundation of China (No. 81972431, 82272898, 82203723, 82203723); Shanghai Sailing Program (No. 20YF1408000); Shanghai Anticancer Association EYAS PROJECT (No. SACA-CY19A07); The Foundation of Shanghai Municipal Health Bureau (No. 20204Y0268; No. 20224Y0233); Shanghai Anti-Cancer Association “Young eagle” program (No. SACA-CY23C06); and the Female Tumour Project of Shanghai Key Clinical Specialty (No. SHSLCZDZK06301).

Author information

Authors and Affiliations

Authors

Contributions

JW, YW: Conceptualisation, Data curation, Investigation, Writing - original draft. YS, CL: Conceptualisation, Data curation, Investigation, Writing - original draft, Formal analysis, Methodology, Resources, Software, Validation, Visualisation. QG, SC, SW, XJ, JZ: Conceptualisation, funding acquisition, project administration, supervision, writing - original draft, writing - review & editing. XW: Conceptualisation, funding acquisition, project administration, supervision, writing - original draft, writing - review & editing.

Corresponding author

Correspondence to Xiaohua Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All study surgical procedures and experimental protocols were approved by the Ethics Committee of Experimental Research, Shanghai Medical College, Fudan University. All participants were informed of the potential risks and benefits, and each patient signed the informed consent form.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wu, Y., Chen, S. et al. PARP1-stabilised FOXQ1 promotes ovarian cancer progression by activating the LAMB3/WNT/β-catenin signalling pathway. Oncogene 43, 866–883 (2024). https://doi.org/10.1038/s41388-024-02943-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-02943-3

Search

Quick links