Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The E3 ligase HUWE1 increases the sensitivity of CRC to oxaliplatin through TOMM20 degradation

Abstract

Continuous administration of oxaliplatin, the most widely used first-line chemotherapy drug for colorectal cancer (CRC), eventually leads to drug resistance. Increasing the sensitivity of CRC cells to oxaliplatin is a key strategy to overcome this issue. Impairment of mitochondrial function is a pivotal mechanism determining the sensitivity of CRC to oxaliplatin. We discovered an inverse correlation between Translocase of Outer Mitochondrial Membrane 20 (TOMM20) and oxaliplatin sensitivity as well as an inverse relationship between TOMM20 and HECT, UBA, and WWE domain containing E3 ligase 1 (HUWE1) expression in CRC. For the first time, we demonstrated that HUWE1 ubiquitinates TOMM20 directly and also regulates TOMM20 degradation via the PARKIN-mediated pathway. Furthermore, we showed that overexpression of HUWE1 in CRC cells has a negative effect on mitochondrial function, including the generation of ATP and maintenance of mitochondrial membrane potential, leading to increased production of ROS and apoptosis. This effect was amplified when cells were treated simultaneously with oxaliplatin. Our study conclusively shows that TOMM20 is a novel target of HUWE1. Our findings indicate that HUWE1 plays a critical role in regulating oxaliplatin sensitivity by degrading TOMM20 and inducing mitochondrial damage in CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TOMM20 expression level and oxaliplatin sensitivity are inversely correlated in CRC cells.
Fig. 2: Dysfunction of TOMM20 ubiquitin-proteasome degradation increases the stability of TOMM20 and induces oxaliplatin resistance in CRC cells.
Fig. 3: HUWE1 modulates oxaliplatin sensitivity through the regulation of TOMM20 in CRC cells.
Fig. 4: HUWE1 specifically ubiquitinates TOMM20 leading to proteasomal degradation.
Fig. 5: HUWE1 regulates the degradation of TOMM20 leading to mitophagy in two ways: both the ubiquitin-mediated pathway and the PARKIN-mediated pathway.
Fig. 6: Overexpression of HUWE1 or suppression of TOMM20 increases oxaliplatin-induced mitochondrial dysfunction in CRC cells.
Fig. 7: Overexpression of HUWE1 induced S phase arrest in oxaliplatin-resistant CRC cells.
Fig. 8: Overexpression of HUWE1 or suppression of TOMM20 induced apoptosis in oxaliplatin-resistant CRC cells.

Similar content being viewed by others

Data availability

All data supporting the findings of this study can be freely accessed by any researcher for non-commercial purposes upon reasonable request.

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  2. Ciombor KK, Wu C, Goldberg RM. Recent therapeutic advances in the treatment of colorectal cancer. Annu Rev Med. 2015;66:83–95.

    Article  CAS  PubMed  Google Scholar 

  3. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, et al. Colorectal cancer. Nat Rev Dis Primers. 2015;1:15065.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marschner N, Arnold D, Engel E, Hutzschenreuter U, Rauh J, Freier W, et al. Oxaliplatin-based first-line chemotherapy is associated with improved overall survival compared to first-line treatment with irinotecan-based chemotherapy in patients with metastatic colorectal cancer - Results from a prospective cohort study. Clin Epidemiol. 2015;7:295–303.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marin JJ, Sanchez de Medina F, Castaño B, Bujanda L, Romero MR, Martinez-Augustin O, et al. Chemoprevention, chemotherapy, and chemoresistance in colorectal cancer. Drug Metab Rev. 2012;44:148–72.

    Article  CAS  PubMed  Google Scholar 

  6. Martinez-Balibrea E, Martínez-Cardús A, Ginés A, Ruiz de Porras V, Moutinho C, Layos L, et al. Tumor-related molecular mechanisms of oxaliplatin resistance. Mol Cancer Ther. 2015;14:1767–76.

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Deng G, Fu Y, Han Y, Guo C, Yin L, et al. FOXC2 Promotes oxaliplatin resistance by inducing epithelial-mesenchymal transition via MAPK/ERK signaling in colorectal cancer. Onco Targets Ther. 2020;13:1625–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen X, Zhang Y, Xu Z, Gao H, Feng W, Li W, et al. KLF5 inhibition overcomes oxaliplatin resistance in patient-derived colorectal cancer organoids by restoring apoptotic response. Cell Death Dis. 2022;13:303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yin Y, Li S, Liang X, Li K, Xie M, Hu B. Construction and validation of an oxaliplatin-resistant gene signature in colorectal cancer patients who underwent chemotherapy. Pharmaceuticals. 2022;15:1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell. 2016;166:555–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gourdier I, Crabbe L, Andreau K, Pau B, Kroemer G. Oxaliplatin-induced mitochondrial apoptotic response of colon carcinoma cells does not require nuclear DNA. Oncogene. 2004;23:7449–57.

    Article  CAS  PubMed  Google Scholar 

  12. Leo M, Schmitt LI, Küsterarent P, Kutritz A, Rassaf T, Kleinschnitz C, et al. Platinum-based drugs cause mitochondrial dysfunction in cultured dorsal root ganglion neurons. Int J Mol Sci. 2020;21:8636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bahar E, Han SY, Kim JY, Yoon H. Chemotherapy resistance: role of mitochondrial and autophagic components. Cancers. 2022;14:1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, et al. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol. 2022;15:97.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yano M, Terada K, Mori M. Mitochondrial import receptors Tom20 and Tom22 have chaperone-like activity. J Biol Chem. 2004;279:10808–13.

    Article  CAS  PubMed  Google Scholar 

  16. Park SH, Lee AR, Choi K, Joung S, Yoon JB, Kim S. TOMM20 as a potential therapeutic target of colorectal cancer. BMB Rep. 2019;52:712–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Franco-Iborra S, Cuadros T, Parent A, Romero-Gimenez J, Vila M, Perier C. Defective mitochondrial protein import contributes to complex I-induced mitochondrial dysfunction and neurodegeneration in Parkinson’s disease. Cell Death Dis. 2018;9:1122.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Roche ME, Lin Z, Whitaker-Menezes D, Zhan T, Szuhai K, Bovee JVMG, et al. Translocase of the outer mitochondrial membrane complex subunit 20 (TOMM20) facilitates cancer aggressiveness and therapeutic resistance in chondrosarcoma. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gong X, Du D, Deng Y, Zhou Y, Sun L, Yuan S. The structure and regulation of the E3 ubiquitin ligase HUWE1 and its biological functions in cancer. Invest New Drugs. 2020;38:515–24.

    Article  CAS  PubMed  Google Scholar 

  20. Kao SH, Wu HT, Wu KJ. Ubiquitination by HUWE1 in tumorigenesis and beyond. J Biomed Sci. 2018;25:67.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhong Q, Gao W, Du F, Wang X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell. 2005;121:1085–95.

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Lu G, Li L, Yi J, Yan K, Wang Y, et al. HUWE1 interacts with BRCA1 and promotes its degradation in the ubiquitin-proteasome pathway. Biochem Biophys Res Commun. 2014;444:549–54.

    Article  CAS  PubMed  Google Scholar 

  23. Yang D, Cheng D, Tu Q, Yang H, Sun B, Yan L, et al. HUWE1 controls the development of non-small cell lung cancer through down-regulation of p53. Theranostics. 2018;8:3517–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leboucher GP, Tsai YC, Yang M, Shaw KC, Zhou M, Veenstra TD, et al. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell. 2012;47:547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Di Rita A, Peschiaroli A, D Acunzo P, Strobbe D, Hu Z, et al. HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα. Nat Commun. 2018;9:3755.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Yoshii SR, Kishi C, Ishihara N, Mizushima N. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem. 2011;286:19630–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hollville E, Carroll RG, Cullen SP, Martin SJ. Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. Mol Cell. 2014;55:451–66.

    Article  CAS  PubMed  Google Scholar 

  28. Chen B, Das NK, Talukder I, Singhal R, Castillo C, Andren A, et al. PTEN-induced kinase PINK1 supports colorectal cancer growth by regulating the labile iron pool. J Biol Chem. 2023;299:104691.

  29. Ma Z, Liu Z, Li X, Zhang H, Han D, Xiong W, et al. Metformin collaborates with PINK1/Mfn2 overexpression to prevent cardiac injury by improving mitochondrial function. Biology. 2023;12:582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hall JR, Kow E, Nevis KR, Lu CK, Luce KS, Zhong Q, et al. Cdc6 stability is regulated by the Huwe1 ubiquitin ligase after DNA damage. Mol Biol Cell. 2007;18:3340–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma W, Zhao P, Zang L, Zhang K, Liao H, Hu Z. Tumour suppressive function of HUWE1 in thyroid cancer. J Biosci. 2016;41:395–405.

    Article  CAS  PubMed  Google Scholar 

  32. Wenmaekers S, Viergever BJ, Kumar G, Kranenburg O, Black PC, Daugaard M, et al. A potential role for HUWE1 in modulating cisplatin sensitivity. Cells. 2021;10:1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cassidy KB, Bang S, Kurokawa M, Gerber SA. Direct regulation of Chk1 protein stability by E3 ubiquitin ligase HUWE1. FEBS J. 2020;287:1985–99.

    Article  CAS  PubMed  Google Scholar 

  34. Jeong S, Kim BG, Kim DY, Kim BR, Kim JL, Park SH, et al. Cannabidiol overcomes oxaliplatin resistance by enhancing NOS3- and SOD2-induced autophagy in human colorectal cancer cells. Cancers. 2019;11:781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun W, Ge Y, Cui J, Yu Y, Liu B. Scutellarin resensitizes oxaliplatin-resistant colorectal cancer cells to oxaliplatin treatment through inhibition of PKM2. Mol Ther Oncolytics. 2021;21:87–97.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yan C, Li TS. Dual role of mitophagy in cancer drug resistance. Anticancer Res. 2018;38:617–21.

    CAS  PubMed  Google Scholar 

  37. Guan Y, Wang Y, Li B, Shen K, Li Q, Ni Y, et al. Mitophagy in carcinogenesis, drug resistance and anticancer therapeutics. Cancer Cell Int. 2021;21:350.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yan C, Luo L, Guo CY, Goto S, Urata Y, Shao JH, et al. Doxorubicin-induced mitophagy contributes to drug resistance in cancer stem cells from HCT8 human colorectal cancer cells. Cancer Lett. 2017;388:34–42.

    Article  CAS  PubMed  Google Scholar 

  39. Okon IS, Zou MH. Mitochondrial ROS and cancer drug resistance: implications for therapy. Pharmacol Res. 2015;100:170–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Graham RL, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet. 2011;20:1726–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boyle KA, Van Wickle J, Hill RB, Marchese A, Kalyanaraman B, Dwinell MB. Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation. J Biol Chem. 2018;293:14891–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang MM, Xu FJ, Su Y, Geng Y, Qian XT, Xue XL, et al. A new strategy to fight metallodrug resistance: mitochondria-relevant treatment through mitophagy to inhibit metabolic adaptations of cancer cells. Angew Chem Int Ed Engl. 2022;61:e202203843.

    Article  CAS  PubMed  Google Scholar 

  43. Myant KB, Cammareri P, Hodder MC, Wills J, Von Kriegsheim A, Győrffy B, et al. HUWE1 is a critical colonic tumor suppressor gene that prevents MYC signaling, DNA damage accumulation, and tumor initiation. EMBO Mol Med. 2017;9:181–97.

    Article  CAS  PubMed  Google Scholar 

  44. Fiorillo M, Ózsvári B, Sotgia F, Lisanti MP. High ATP production fuels cancer drug resistance and metastasis: implications for mitochondrial ATP depletion therapy. Front Oncol. 2021;11:740720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports. 2013;2:78–91.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Recasens A, Munoz L. Targeting cancer cell dormancy. Trends Pharmacol Sci. 2019;40:128–41.

    Article  CAS  PubMed  Google Scholar 

  47. Xiong Y, Kotake Y. No exit strategy? No problem: APC inhibits beta-catenin inside the nucleus. Genes Dev. 2006;20:637–42.

    Article  CAS  PubMed  Google Scholar 

  48. Leppert M, Burt R, Hughes JP, Samowitz W, Nakamura Y, Woodward S, et al. Genetic analysis of an inherited predisposition to colon cancer in a family with a variable number of adenomatous polyps. N Engl J Med. 1990;322:904–8.

    Article  CAS  PubMed  Google Scholar 

  49. Segditsas S, Tomlinson I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene. 2006;25:7531–7.

    Article  CAS  PubMed  Google Scholar 

  50. Schatoff EM, Leach BI, Dow LE. Wnt signaling and colorectal cancer. Curr Colorectal Cancer Rep. 2017;13:101–10.

    Article  PubMed  PubMed Central  Google Scholar 

  51. de Sousa E Melo F, Vermeulen L. Wnt signaling in cancer stem cell biology. Cancers. 2016;8:60.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tanaka H, Kawaguchi M, Shoda S, Miyoshi T, Iwasaki R, Hyodo F, et al. Nuclear accumulation of β-Catenin in cancer stem cell radioresistance and stemness in human colon cancer. Anticancer Res. 2019;39:6575–83.

    Article  CAS  PubMed  Google Scholar 

  53. Dominguez-Brauer C, Khatun R, Elia AJ, Thu KL, Ramachandran P, Baniasadi SP, et al. E3 ubiquitin ligase Mule targets β-catenin under conditions of hyperactive Wnt signaling. Proc Natl Acad Sci USA. 2017;114:E1148–E1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rodríguez-Fanjul V, Guerrero-López R, Fernández-Varas B, Perona R, Sastre-Perona A, Sastre L. Comparison of colorectal cancer stem cells and oxaliplatin-resistant cells unveils functional similarities. Cells. 2022;11:511.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Boye C, Arpag S, Francis M, DeClemente S, West A, Heller R, et al. Reduction of plasmid vector backbone length enhances reporter gene expression. Bioelectrochemistry. 2022;144:107981.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government. (MSIT) (2022R1F1A1066987, RS-2023-00273665).

Author information

Authors and Affiliations

Authors

Contributions

CL and SKY conceived the study and designed the experiment. CL and SHP performed the experiment and analyzed the data. CL and SKY interpreted and discussed the data. CL wrote the manuscript. SKY revised the manuscript and supervised the study.

Corresponding author

Correspondence to Sungjoo Kim Yoon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C., Park, SH. & Yoon, S.K. The E3 ligase HUWE1 increases the sensitivity of CRC to oxaliplatin through TOMM20 degradation. Oncogene 43, 636–649 (2024). https://doi.org/10.1038/s41388-023-02928-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02928-8

Search

Quick links