Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SOX10 deficiency-mediated LAMB3 upregulation determines the invasiveness of MAPKi-resistant melanoma

Abstract

Melanoma that develops adaptive resistance to MAPK inhibitors (MAPKi) through transcriptional reprograming-mediated phenotype switching is associated with enhanced metastatic potential, yet the underlying mechanism of this improved invasiveness has not been fully elucidated. In this study, we show that MAPKi-resistant melanoma cells are more motile and invasive than the parental cells. We further show that LAMB3, a β subunit of the extracellular matrix protein laminin-332 is upregulated in MAPKi-resistant melanoma cells and that the LAMB3-Integrin α3/α6 signaling mediates the motile and invasive phenotype of resistant cells. In addition, we demonstrate that SOX10 deficiency in MAPKi-resistant melanoma cells drives LAMB3 upregulation through TGF-β signaling. Transcriptome profiling and functional studies further reveal a FAK/MMPs axis mediates the pro-invasiveness effect of LAMB3. Using a mouse lung metastasis model, we demonstrate LAMB3 depletion inhibits the metastatic potential of MAPKi-resistant cells in vivo. In summary, this study identifies a SOX10low/TGF-β/LAMB3/FAK/MMPs signaling pathway that determines the migration and invasion properties of MAPKi-resistant melanoma cells and provide rationales for co-targeting LAMB3 to curb the metastasis of melanoma cells in targeted therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LAMB3 mediates enhanced cell motility and invasiveness of MAPKi-resistant melanoma cells.
Fig. 2: The integrin α3 and α6 are required for LAMB3-mediated enhancement of invasive phenotype of MAPKi-resistant melanoma cells.
Fig. 3: SOX10 negatively regulates LAMB3.
Fig. 4: SOX10-deficiency induces LAMB3 upregulation via activating TGF-β signaling.
Fig. 5: LAMB3 regulates the expression of multiple MMPs.
Fig. 6: LAMB3 regulates MMPs through FAK.
Fig. 7: LAMB3 depletion reduces metastatic potential of MAPKi-resistant melanoma tumors in vivo.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and the supplementary files.

References

  1. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl J Med. 2011;364:2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature. 2010;467:596.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, et al. Survival in BRAF V600–mutant advanced melanoma treated with vemurafenib. N. Engl J Med. 2012;366:707–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Aplin AE, Kaplan FM, Shao Y. Mechanisms of resistance to RAF inhibitors in melanoma. J Invest Dermatol. 2011;131:1817–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hartsough EJ, Shao Y, Aplin AE. Resistance to RAF Inhibitors Revisited. J Invest Dermatol. 2014;134:319–25.

    Article  CAS  PubMed  Google Scholar 

  6. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF (V600E). Nature. 2011;480:387.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Roesch A. Tumor heterogeneity and plasticity as elusive drivers for resistance to MAPK pathway inhibition in melanoma. Oncogene. 2015;34:2951–7.

    Article  CAS  PubMed  Google Scholar 

  8. Shaffer SM, Dunagin MC, Torborg SR, Torre EA, Emert B, Krepler C, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature. 2017;546:431–5.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. Shen S, Faouzi S, Souquere S, Roy S, Routier E, Libenciuc C, et al. Melanoma Persister Cells Are Tolerant to BRAF/MEK Inhibitors via ACOX1-Mediated Fatty Acid Oxidation. Cell Rep. 2020;33:108421.

    Article  CAS  PubMed  Google Scholar 

  10. Fallahi-Sichani M, Becker V, Izar B, Baker GJ, Lin JR, Boswell SA, et al. Adaptive resistance of melanoma cells to RAF inhibition via reversible induction of a slowly dividing de-differentiated state. Mol Syst Biol. 2017;13:905.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Su Y, Wei W, Robert L, Xue M, Tsoi J, Garcia-Diaz A, et al. Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance. Proc Natl Acad Sci USA. 2017;114:13679–84.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA, Piris A, et al. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 2014;4:816–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun C, Wang L, Huang S, Heynen GJ, Prahallad A, Robert C, et al. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature. 2014;508:118–22.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Smith MP, Rana S, Ferguson J, Rowling EJ, Flaherty KT, Wargo JA, et al. A PAX3/BRN2 rheostat controls the dynamics of BRAF mediated MITF regulation in MITF(high) /AXL(low) melanoma. Pigment cell &. melanoma Res. 2019;32:280–91.

    Article  CAS  Google Scholar 

  15. O’Connell MP, Marchbank K, Webster MR, Valiga AA, Kaur A, Vultur A, et al. Hypoxia induces phenotypic plasticity and therapy resistance in melanoma via the tyrosine kinase receptors ROR1 and ROR2. Cancer Discov. 2013;3:1378–93.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rousselle P, Beck K. Laminin 332 processing impacts cellular behavior. Cell Adh Migr. 2013;7:122–34.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Huang C, Chen J. Laminin-332 mediates proliferation, apoptosis, invasion, migration and epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma. Mol Med Rep. 2021;23:11.

    PubMed  Google Scholar 

  18. Zhang H, Pan YZ, Cheung M, Cao M, Yu C, Chen L, et al. LAMB3 mediates apoptotic, proliferative, invasive, and metastatic behaviors in pancreatic cancer by regulating the PI3K/Akt signaling pathway. Cell Death Dis. 2019;10:230.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhu Z, Song J, Guo Y, Huang Z, Chen X, Dang X, et al. LAMB3 promotes tumour progression through the AKT-FOXO3/4 axis and is transcriptionally regulated by the BRD2/acetylated ELK4 complex in colorectal cancer. Oncogene. 2020;39:4666–80.

    Article  CAS  PubMed  Google Scholar 

  20. Jung SN, Lim HS, Liu L, Chang JW, Lim YC, Rha KS, et al. LAMB3 mediates metastatic tumor behavior in papillary thyroid cancer by regulating c-MET/Akt signals. Sci Rep. 2018;8:2718.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  21. Liu L, Jung SN, Oh C, Lee K, Won HR, Chang JW, et al. LAMB3 is associated with disease progression and cisplatin cytotoxic sensitivity in head and neck squamous cell carcinoma. Eur J Surg Oncol. 2019;45:359–65.

    Article  PubMed  Google Scholar 

  22. Shakhova O, Zingg D, Schaefer SM, Hari L, Civenni G, Blunschi J, et al. Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol. 2012;14:882.

    Article  CAS  PubMed  Google Scholar 

  23. Graf SA, Busch C, Bosserhoff A-K, Besch R, Berking C. SOX10 promotes melanoma cell invasion by regulating melanoma inhibitory activity. J Invest Dermatol. 2014;134:2212–20.

    Article  CAS  PubMed  Google Scholar 

  24. Capparelli C, Purwin TJ, Glasheen M, Caksa S, Tiago M, Wilski N, et al. Targeting SOX10-deficient cells to reduce the dormant-invasive phenotype state in melanoma. Nat Commun. 2022;13:1381.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  25. Han S, Ren Y, He W, Liu H, Zhi Z, Zhu X, et al. ERK-mediated phosphorylation regulates SOX10 sumoylation and targets expression in mutant BRAF melanoma. Nat Commun. 2018;9:28.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  26. Han S, Yan Y, Ren Y, Hu Y, Wang Y, Chen L, et al. LncRNA SAMMSON Mediates Adaptive Resistance to RAF Inhibition in BRAF-Mutant Melanoma Cells. Cancer Res. 2021;81:2918–29.

    Article  CAS  PubMed  Google Scholar 

  27. Sanchez-Laorden B, Viros A, Girotti MR, Pedersen M, Saturno G, Zambon A, et al. BRAF inhibitors induce metastasis in RAS mutant or inhibitor-resistant melanoma cells by reactivating MEK and ERK signaling. Sci Signal. 2014;7:ra30.

    Article  PubMed  Google Scholar 

  28. Girotti MR, Pedersen M, Sanchez-Laorden B, Viros A, Turajlic S, Niculescu-Duvaz D, et al. Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discov. 2013;3:158–67.

    Article  CAS  PubMed  Google Scholar 

  29. Paraiso KH, Das Thakur M, Fang B, Koomen JM, Fedorenko IV, et al. Ligand-independent EPHA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype. Cancer Discov. 2015;5:264–73.

    Article  CAS  PubMed  Google Scholar 

  30. Paris A, Tardif N, Baietti FM, Berra C, Leclair HM, Leucci E, et al. The AhR-SRC axis as a therapeutic vulnerability in BRAFi-resistant melanoma. EMBO Mol Med. 2022;14:e15677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yadav V, Jobe N, Satapathy SR, Mohapatra P, Andersson T. Increased MARCKS Activity in BRAF Inhibitor-Resistant Melanoma Cells Is Essential for Their Enhanced Metastatic Behavior Independent of Elevated WNT5A and IL-6 Signaling. Cancers (Basel). 2022;14:6077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Waizenegger IC, Baum A, Steurer S, Stadtmüller H, Bader G, Schaaf O, et al. A Novel RAF kinase inhibitor with DFG-out-binding mode: high efficacy in braf-mutant tumor xenograft models in the absence of normal tissue hyperproliferation. Mol Cancer Ther. 2016;15:354–65.

    Article  CAS  PubMed  Google Scholar 

  33. Patel V, Szász I, Koroknai V, Kiss T, Balázs M. Molecular Alterations Associated with Acquired Drug Resistance during Combined Treatment with Encorafenib and Binimetinib in Melanoma Cell Lines. Cancers (Basel). 2021;13:6058.

    Article  CAS  PubMed  Google Scholar 

  34. Kolli-Bouhafs K, Sick E, Noulet F, Gies JP, De Mey J, Ronde P. FAK competes for Src to promote migration against invasion in melanoma cells. Cell Death Dis. 2014;5:e1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hess AR, Postovit LM, Margaryan NV, Seftor EA, Schneider GB, Seftor RE, et al. Focal adhesion kinase promotes the aggressive melanoma phenotype. Cancer Res. 2005;65:9851–60.

    Article  CAS  PubMed  Google Scholar 

  36. Bailey CL, Kelly P, Casey PJ. Activation of Rap1 promotes prostate cancer metastasis. Cancer Res. 2009;69:4962–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang YL, Wang RC, Cheng K, Ring BZ, Su L. Roles of Rap1 signaling in tumor cell migration and invasion. Cancer Biol Med. 2017;14:90–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yazlovitskaya EM, Viquez OM, Tu T, De Arcangelis A, Georges-Labouesse E, Sonnenberg A, et al. The laminin binding alpha3 and alpha6 integrins cooperate to promote epithelial cell adhesion and growth. Matrix Biol. 2019;77:101–16.

    Article  CAS  PubMed  Google Scholar 

  39. Siljamaki E, Rappu P, Riihila P, Nissinen L, Kahari VM, Heino J. H-Ras activation and fibroblast-induced TGF-beta signaling promote laminin-332 accumulation and invasion in cutaneous squamous cell carcinoma. Matrix Biol. 2020;87:26–47.

    Article  CAS  PubMed  Google Scholar 

  40. Hofmann UB, Westphal JR, Van Muijen GN, Ruiter DJ. Matrix metalloproteinases in human melanoma. J Invest Dermatol. 2000;115:337–44.

    Article  CAS  PubMed  Google Scholar 

  41. Iida J, McCarthy JB. Expression of collagenase-1 (MMP-1) promotes melanoma growth through the generation of active transforming growth factor-beta. Melanoma Res. 2007;17:205–13.

    Article  CAS  PubMed  Google Scholar 

  42. Jiao Y, Feng X, Zhan Y, Wang R, Zheng S, Liu W, et al. Matrix metalloproteinase-2 promotes alphavbeta3 integrin-mediated adhesion and migration of human melanoma cells by cleaving fibronectin. PLoS One. 2012;7:e41591.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Leight JL, Drain AP, Weaver VM. Extracellular Matrix Remodeling and Stiffening Modulate Tumor Phenotype and Treatment Response. Annu Rev Canc Biol. 2017;1:313–34.

    Article  Google Scholar 

  44. Fedorenko IV, Abel EV, Koomen JM, Fang B, Wood ER, Chen YA, et al. Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells. Oncogene. 2016;35:1225–35.

    Article  CAS  PubMed  Google Scholar 

  45. Miskolczi Z, Smith MP, Rowling EJ, Ferguson J, Barriuso J, Wellbrock C. Collagen abundance controls melanoma phenotypes through lineage-specific microenvironment sensing. Oncogene. 2018;37:3166–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Girard CA, Lecacheur M, Ben Jouira R, Berestjuk I, Diazzi S, Prod’homme V, et al. A Feed-Forward Mechanosignaling Loop Confers Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutant Melanoma. Cancer Res. 2020;80:1927–41.

    Article  CAS  PubMed  Google Scholar 

  47. Lüönd F, Pirkl M, Hisano M, Prestigiacomo V, Kalathur RK, Beerenwinkel N, et al. Hierarchy of TGFβ/SMAD, Hippo/YAP/TAZ, and Wnt/β-catenin signaling in melanoma phenotype switching. Life Sci Allian. 2022;5:e202101010.

    Article  Google Scholar 

  48. Elworthy S, Lister JA, Carney TJ, Raible DW, Kelsh RN. Transcriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development. Development. 2003;130:2809–18.

    Article  CAS  PubMed  Google Scholar 

  49. Leucci E, Vendramin R, Spinazzi M, Laurette P, Fiers M, Wouters J, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016;531:518–22.

    Article  CAS  PubMed  ADS  Google Scholar 

  50. Sandri S, Faião-Flores F, Tiago M, Pennacchi PC, Massaro RR, Alves-Fernandes DK, et al. Vemurafenib resistance increases melanoma invasiveness and modulates the tumor microenvironment by MMP-2 upregulation. Pharmacol Res. 2016;111:523–33.

    Article  CAS  PubMed  Google Scholar 

  51. Abel EV, Basile KJ, Kugel CH, Witkiewicz AK, Le K, Amaravadi RK, et al. Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. J Clin Investig. 2013;123:2155–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Meenhard Herlyn (Wistar Institute, Philadelphia, PA, USA) for kindly providing the 1205Lu cells. This work was supported by the National Natural Science Foundation of China (32000541 to S. Han) and the China Postdoctoral Science Foundation (2019TQ0254, 2019M663671 to S. Han), the National Natural Science Foundation of China (82272877, 31970724 to Y. Shao), the Integrated Project of the National Science Foundation Key Program of China (92249303 to J. Liu), the Fundamental Research Funds for the Central Universities (to Y. Shao)

Author information

Authors and Affiliations

Authors

Contributions

S.H. performed most experiments with the help of M.Z., X.Q., Z.W., Z.H., Y.H., Y.L., L.C. and L.S. Y.S. and S.H. analyzed the data. S.H., Y.S. and J.L. wrote the manuscript. Y.S., J.L. and S.H. conceived and supervised the study.

Corresponding authors

Correspondence to Jiankang Liu or Yongping Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Zhang, M., Qu, X. et al. SOX10 deficiency-mediated LAMB3 upregulation determines the invasiveness of MAPKi-resistant melanoma. Oncogene 43, 434–446 (2024). https://doi.org/10.1038/s41388-023-02917-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02917-x

Search

Quick links