Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

From odor to oncology: non-canonical odorant receptors in cancer

Abstract

Odorant receptors, traditionally associated with olfaction as chemoreceptors, have been increasingly recognized for their presence and diverse functions in various non-nasal tissues throughout the body. Beyond their roles in sensory perception, emerging evidence suggests a compelling interplay between odorant receptors and cancer progression as well. Alongside the canonical GPCR odorant receptors, dysregulation of non-canonical odorant receptors such as trace amine-associated receptors (TAARs), formyl peptide receptors (FPRs), and membrane-spanning 4A family (MS4As) has been observed in various cancer types, suggesting their contributions to cancer progression. The roles of these non-canonical chemoreceptors in cancer are complex, with some receptors promoting tumorigenesis and others acting as tumor-suppressing factors upon activation, depending on the cancer type. These findings shed light on the potential of non-canonical odorant receptors as therapeutic targets and prognostic markers in cancer, inviting further exploration to unravel their precise mechanisms of action and implications in cancer biology. In this review, we provide a comprehensive overview of the intricate relationships between these chemoreceptors and various types of cancer, potentially paving the way for innovative odor-based therapeutics. Ultimately, this review discusses the potential development of novel therapeutic strategies targeting these non-canonical chemoreceptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sketched representation of the olfactory process and the signal transduction pathways involved in perceiving odors.
Fig. 2: Schematic diagram illustrating the potential roles of non-canonical ORs in cancer progression.
Fig. 3: Potential therapeutic strategies targeting non-canonical ORs.

Similar content being viewed by others

References

  1. Buck LB. Olfactory receptors and odor coding in mammals. Nutr Rev. 2004;62:S184–188.

    Article  PubMed  Google Scholar 

  2. Niimura Y. Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents. Hum Genomics. 2009;4:107–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Buck L, Axel R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell. 1991;65:175–87.

    Article  PubMed  CAS  Google Scholar 

  4. Greer PL, Bear DM, Lassance JM, Bloom ML, Tsukahara T, Pashkovski SL, et al. A family of non-GPCR chemosensors defines an alternative logic for mammalian olfaction. Cell. 2016;165:1734–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Matsunami H, Buck LB. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell. 1997;90:775–84.

    Article  PubMed  CAS  Google Scholar 

  6. Rivière S, Challet L, Fluegge D, Spehr M, Rodriguez I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature. 2009;459:574–7.

    Article  PubMed  Google Scholar 

  7. Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL, Siltberg-Liberles J, et al. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci USA. 2009;106:9842–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Liberles SD, Buck LB. A second class of chemosensory receptors in the olfactory epithelium. Nature. 2006;442:645–50.

    Article  PubMed  CAS  Google Scholar 

  9. Saraiva LR, Kondoh K, Ye X, Yoon KH, Hernandez M, Buck LB. Combinatorial effects of odorants on mouse behavior. Proc Natl Acad Sci USA. 2016;113:E3300–3306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Harmeier A, Meyer CA, Staempfli A, Casagrande F, Petrinovic MM, Zhang YP, et al. How female mice attract males: a urinary volatile amine activates a trace amine-associated receptor that induces male sexual interest. Front Pharm. 2018;9:924.

    Article  Google Scholar 

  11. Chamero P, Leinders-Zufall T, Zufall F. From genes to social communication: molecular sensing by the vomeronasal organ. Trends Neurosci. 2012;35:597–606.

    Article  PubMed  CAS  Google Scholar 

  12. Bufe B, Teuchert Y, Schmid A, Pyrski M, Pérez-Gómez A, Eisenbeis J, et al. Bacterial MgrB peptide activates chemoreceptor Fpr3 in mouse accessory olfactory system and drives avoidance behaviour. Nat Commun. 2019;10:4889.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lee SJ, Depoortere I, Hatt H. Therapeutic potential of ectopic olfactory and taste receptors. Nat Rev Drug Discov. 2019;18:116–38.

    Article  PubMed  CAS  Google Scholar 

  14. Maßberg D, Hatt H. Human olfactory receptors: novel cellular functions outside of the nose. Physiol Rev. 2018;98:1739–63.

    Article  PubMed  Google Scholar 

  15. Drew L. Olfactory receptors are not unique to the nose. Nature. 2022;606:S14–s17.

    Article  PubMed  CAS  Google Scholar 

  16. Eon Kuek L, Leffler M, Mackay GA, Hulett MD. The MS4A family: counting past 1, 2 and 3. Immunol Cell Biol. 2016;94:11–23.

    Article  PubMed  Google Scholar 

  17. Mattiola I, Mantovani A, Locati M. The tetraspan MS4A family in homeostasis, immunity, and disease. Trends Immunol. 2021;42:764–81.

    Article  PubMed  CAS  Google Scholar 

  18. Berry MD, Gainetdinov RR, Hoener MC, Shahid M. Pharmacology of human trace amine-associated receptors: therapeutic opportunities and challenges. Pharm Ther. 2017;180:161–80.

    Article  CAS  Google Scholar 

  19. Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, et al. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharm Rev. 2009;61:119–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Becker EL, Forouhar FA, Grunnet ML, Boulay F, Tardif M, Bormann BJ, et al. Broad immunocytochemical localization of the formylpeptide receptor in human organs, tissues, and cells. Cell Tissue Res. 1998;292:129–35.

    Article  PubMed  CAS  Google Scholar 

  21. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, et al. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science. 2003;299:2054–8.

    Article  PubMed  CAS  Google Scholar 

  22. Aisenberg WH, Huang J, Zhu W, Rajkumar P, Cruz R, Santhanam L, et al. Defining an olfactory receptor function in airway smooth muscle cells. Sci Rep. 2016;6:38231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Braun T, Voland P, Kunz L, Prinz C, Gratzl M. Enterochromaffin cells of the human gut: sensors for spices and odorants. Gastroenterology. 2007;132:1890–901.

    Article  PubMed  CAS  Google Scholar 

  24. Busse D, Kudella P, Grüning NM, Gisselmann G, Ständer S, Luger T, et al. A synthetic sandalwood odorant induces wound-healing processes in human keratinocytes via the olfactory receptor OR2AT4. J Invest Dermatol. 2014;134:2823–32.

    Article  PubMed  CAS  Google Scholar 

  25. Tsai T, Veitinger S, Peek I, Busse D, Eckardt J, Vladimirova D, et al. Two olfactory receptors-OR2A4/7 and OR51B5-differentially affect epidermal proliferation and differentiation. Exp Dermatol. 2017;26:58–65.

    Article  PubMed  CAS  Google Scholar 

  26. Chung C, Cho HJ, Lee C, Koo J. Odorant receptors in cancer. BMB Rep. 2022;55:72–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16:829–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Boillat M, Carleton A, Rodriguez I. From immune to olfactory expression: neofunctionalization of formyl peptide receptors. Cell Tissue Res. 2021;383:387–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Weiß E, Kretschmer D. Formyl-peptide receptors in infection, inflammation, and cancer. Trends Immunol. 2018;39:815–29.

    Article  PubMed  Google Scholar 

  30. Naressi RG, Schechtman D, Malnic B. Odorant receptors as potential drug targets. Trends Pharm Sci. 2023;44:11–14.

    Article  PubMed  CAS  Google Scholar 

  31. Kalra S, Mittal A, Bajoria M, Mishra T, Maryam S, Sengupta D, et al. Challenges and possible solutions for decoding extranasal olfactory receptors. Febs J. 2021;288:4230–41.

    Article  PubMed  CAS  Google Scholar 

  32. Cho HJ, Koo J. Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review. BMB Rep. 2021;54:601–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chen Z, Zhao H, Fu N, Chen L. The diversified function and potential therapy of ectopic olfactory receptors in non-olfactory tissues. J Cell Physiol. 2018;233:2104–15.

    Article  PubMed  CAS  Google Scholar 

  34. Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes. Nat Struct Mol Biol. 2018;25:4–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Krautwurst D, Yau KW, Reed RR. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell. 1998;95:917–26.

    Article  PubMed  CAS  Google Scholar 

  36. Patel A, Peralta-Yahya P. Olfactory receptors as an emerging chemical sensing scaffold. Biochemistry. 2023;62:187–95.

    Article  PubMed  CAS  Google Scholar 

  37. Fleischer J, Breer H, Strotmann J. Mammalian olfactory receptors. Front Cell Neurosci. 2009;3:9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang X, Rogers M, Tian H, Zhang X, Zou DJ, Liu J, et al. High-throughput microarray detection of olfactory receptor gene expression in the mouse. Proc Natl Acad Sci USA. 2004;101:14168–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Niimura Y, Nei M. Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci USA. 2005;102:6039–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Niimura Y, Nei M. Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS ONE. 2007;2:e708.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Miyamichi K, Serizawa S, Kimura HM, Sakano H. Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral positioning of glomeruli in the olfactory bulb. J Neurosci. 2005;25:3586–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ebrahimi FA, Chess A. Olfactory G proteins: simple and complex signal transduction. Curr Biol. 1998;8:R431–433.

    Article  PubMed  CAS  Google Scholar 

  43. Jones DT, Reed RR. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science. 1989;244:790–5.

    Article  PubMed  CAS  Google Scholar 

  44. Bakalyar HA, Reed RR. Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science. 1990;250:1403–6.

    Article  PubMed  CAS  Google Scholar 

  45. Lin W, Arellano J, Slotnick B, Restrepo D. Odors detected by mice deficient in cyclic nucleotide-gated channel subunit A2 stimulate the main olfactory system. J Neurosci. 2004;24:3703–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H. ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci USA. 2009;106:11776–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, et al. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA. 2001;98:8966–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC. Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics. 2005;85:372–85.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang J, Pacifico R, Cawley D, Feinstein P, Bozza T. Ultrasensitive detection of amines by a trace amine-associated receptor. J Neurosci. 2013;33:3228–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Silva L, Antunes A. Vomeronasal receptors in vertebrates and the evolution of pheromone detection. Annu Rev Anim Biosci. 2017;5:353–70.

    Article  PubMed  CAS  Google Scholar 

  51. Dulac C, Torello AT. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat Rev Neurosci. 2003;4:551–62.

    Article  PubMed  CAS  Google Scholar 

  52. Rodriguez I, Del Punta K, Rothman A, Ishii T, Mombaerts P. Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors. Nat Neurosci. 2002;5:134–40.

    Article  PubMed  CAS  Google Scholar 

  53. Young JM, Trask BJ. V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet. 2007;23:212–5.

    Article  PubMed  CAS  Google Scholar 

  54. Rodriguez I, Greer CA, Mok MY, Mombaerts P. A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet. 2000;26:18–19.

    Article  PubMed  CAS  Google Scholar 

  55. Shi P, Zhang J. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res. 2007;17:166–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Berghard A, Buck LB. Sensory transduction in vomeronasal neurons: evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade. J Neurosci. 1996;16:909–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Holy TE, Dulac C, Meister M. Responses of vomeronasal neurons to natural stimuli. Science. 2000;289:1569–72.

    Article  PubMed  CAS  Google Scholar 

  58. Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F. A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron. 2003;40:551–61.

    Article  PubMed  CAS  Google Scholar 

  59. Liman ER, Corey DP, Dulac C. TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci USA. 1999;96:5791–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kim S, Ma L, Yu CR. Requirement of calcium-activated chloride channels in the activation of mouse vomeronasal neurons. Nat Commun. 2011;2:365.

    Article  PubMed  Google Scholar 

  61. Gao JL, Chen H, Filie JD, Kozak CA, Murphy PM. Differential expansion of the N-formylpeptide receptor gene cluster in human and mouse. Genomics. 1998;51:270–6.

    Article  PubMed  CAS  Google Scholar 

  62. Wang ZG, Ye RD. Characterization of two new members of the formyl peptide receptor gene family from 129S6 mice. Gene. 2002;299:57–63.

    Article  PubMed  CAS  Google Scholar 

  63. Zimmerman AD, Munger SD. Olfactory subsystems associated with the necklace glomeruli in rodents. Cell Tissue Res. 2021;383:549–57.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Khan MZ, Nawaz W. The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system. Biomed Pharmacother. 2016;83:439–49.

    Article  PubMed  CAS  Google Scholar 

  65. Duan J, Martinez M, Sanders AR, Hou C, Saitou N, Kitano T, et al. Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia. Am J Hum Genet. 2004;75:624–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Nelson DA, Tolbert MD, Singh SJ, Bost KL. Expression of neuronal trace amine-associated receptor (Taar) mRNAs in leukocytes. J Neuroimmunol. 2007;192:21–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. D’Andrea G, Terrazzino S, Fortin D, Farruggio A, Rinaldi L, Leon A. HPLC electrochemical detection of trace amines in human plasma and platelets and expression of mRNA transcripts of trace amine receptors in circulating leukocytes. Neurosci Lett. 2003;346:89–92.

    Article  PubMed  Google Scholar 

  68. Babusyte A, Kotthoff M, Fiedler J, Krautwurst D. Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2. J Leukoc Biol. 2013;93:387–94.

    Article  PubMed  CAS  Google Scholar 

  69. Boulay F, Tardif M, Brouchon L, Vignais P. Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA. Biochem Biophys Res Commun. 1990;168:1103–9.

    Article  PubMed  CAS  Google Scholar 

  70. Crouser ED, Shao G, Julian MW, Macre JE, Shadel GS, Tridandapani S, et al. Monocyte activation by necrotic cells is promoted by mitochondrial proteins and formyl peptide receptors. Crit Care Med. 2009;37:2000–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Silva-Gomes R, Mapelli SN, Boutet MA, Mattiola I, Sironi M, Grizzi F, et al. Differential expression and regulation of MS4A family members in myeloid cells in physiological and pathological conditions. J Leukoc Biol. 2022;111:817–36.

    Article  PubMed  CAS  Google Scholar 

  72. Deming Y, Filipello F, Cignarella F, Cantoni C, Hsu S, Mikesell R, et al. The MS4A gene cluster is a key modulator of soluble TREM2 and Alzheimer’s disease risk. Sci Transl Med. 2019;11:505.

    Article  Google Scholar 

  73. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Bennett FC, Bennett ML, Yaqoob F, Mulinyawe SB, Grant GA, Hayden Gephart M, et al. A combination of ontogeny and CNS environment establishes microglial identity. Neuron. 2018;98:1170–1183.e1178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Michel J, Schönhaar K, Schledzewski K, Gkaniatsou C, Sticht C, Kellert B, et al. Identification of the novel differentiation marker MS4A8B and its murine homolog MS4A8A in colonic epithelial cells lost during neoplastic transformation in human colon. Cell Death Dis. 2013;4:e469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wasik AM, Millan MJ, Scanlan T, Barnes NM, Gordon J. Evidence for functional trace amine associated receptor-1 in normal and malignant B cells. Leuk Res. 2012;36:245–9.

    Article  PubMed  CAS  Google Scholar 

  77. Tremmel E, Hofmann S, Kuhn C, Heidegger H, Heublein S, Hermelink K, et al. Thyronamine regulation of TAAR1 expression in breast cancer cells and investigation of its influence on viability and migration. Breast Cancer (Dove Med Press). 2019;11:87–97.

    PubMed  CAS  Google Scholar 

  78. Shinderman-Maman E, Cohen K, Moskovich D, Hercbergs A, Werner H, Davis PJ, et al. Thyroid hormones derivatives reduce proliferation and induce cell death and DNA damage in ovarian cancer. Sci Rep. 2017;7:16475.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vattai A, Akyol E, Kuhn C, Hofmann S, Heidegger H, von Koch F, et al. Increased trace amine-associated receptor 1 (TAAR1) expression is associated with a positive survival rate in patients with breast cancer. J Cancer Res Clin Oncol. 2017;143:1637–47.

    Article  PubMed  CAS  Google Scholar 

  80. Vogelsang TLR, Vattai A, Schmoeckel E, Kaltofen T, Chelariu-Raicu A, Zheng M, et al. Trace amine-associated receptor 1 (TAAR1) is a positive prognosticator for epithelial ovarian cancer. Int J Mol Sci. 2021;22:8479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Vaganova AN, Kuvarzin SR, Sycheva AM, Gainetdinov RR. Deregulation of trace amine-associated receptors (TAAR) expression and signaling mode in melanoma. Biomolecules. 2022;12:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Kovács T, Mikó E, Vida A, Sebő É, Toth J, Csonka T, et al. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci Rep. 2019;9:1300.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Silva MP, Barros-Silva JD, Vieira J, Lisboa S, Torres L, Correia C, et al. NCOA2 is a candidate target gene of 8q gain associated with clinically aggressive prostate cancer. Genes Chromosomes Cancer. 2016;55:365–74.

    Article  PubMed  CAS  Google Scholar 

  84. Li Y, Wang D, Wang L, Yu J, Du D, Chen Y, et al. Distinct genomic aberrations between low-grade and high-grade gliomas of Chinese patients. PLoS ONE. 2013;8:e57168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE, Grandis JR. Head and neck squamous cell carcinoma. Nat Rev Dis Prim. 2020;6:92.

    Article  PubMed  Google Scholar 

  86. Jiang Y, Guo H, Tong T, Xie F, Qin X, Wang X, et al. lncRNA lnc-POP1-1 upregulated by VN1R5 promotes cisplatin resistance in head and neck squamous cell carcinoma through interaction with MCM5. Mol Ther. 2022;30:448–67.

    Article  PubMed  CAS  Google Scholar 

  87. Snapkov I, Oqvist CO, Figenschau Y, Kogner P, Johnsen JI, Sveinbjornsson B. The role of formyl peptide receptor 1 (FPR1) in neuroblastoma tumorigenesis. BMC Cancer. 2016;16:490.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Huang J, Chen K, Chen J, Gong W, Dunlop NM, Howard OM, et al. The G-protein-coupled formylpeptide receptor FPR confers a more invasive phenotype on human glioblastoma cells. Br J Cancer. 2010;102:1052–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Yang Y, Liu Y, Yao X, Ping Y, Jiang T, Liu Q, et al. Annexin 1 released by necrotic human glioblastoma cells stimulates tumor cell growth through the formyl peptide receptor 1. Am J Pathol. 2011;179:1504–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Khau T, Langenbach SY, Schuliga M, Harris T, Johnstone CN, Anderson RL, et al. Annexin-1 signals mitogen-stimulated breast tumor cell proliferation by activation of the formyl peptide receptors (FPRs) 1 and 2. Faseb J. 2011;25:483–96.

    Article  PubMed  CAS  Google Scholar 

  91. Vecchi L, Alves Pereira Zóia M, Goss Santos T, de Oliveira Beserra A, Colaço Ramos CM, França Matias Colombo B, et al. Inhibition of the AnxA1/FPR1 autocrine axis reduces MDA-MB-231 breast cancer cell growth and aggressiveness in vitro and in vivo. Biochim Biophys Acta Mol Cell Res. 2018;1865:1368–82.

    Article  PubMed  CAS  Google Scholar 

  92. Vecchi L, Mota STS, Zóia MAP, Martins IC, de Souza JB, Santos TG, et al. Interleukin-6 signaling in triple negative breast cancer cells elicits the annexin A1/formyl peptide receptor 1 axis and affects the tumor microenvironment. Cells. 2022;11:1705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Prevete N, Liotti F, Visciano C, Marone G, Melillo RM, de Paulis A. The formyl peptide receptor 1 exerts a tumor suppressor function in human gastric cancer by inhibiting angiogenesis. Oncogene. 2015;34:3826–38.

    Article  PubMed  CAS  Google Scholar 

  94. Cheng TY, Wu MS, Lin JT, Lin MT, Shun CT, Hua KT, et al. Formyl Peptide receptor 1 expression is associated with tumor progression and survival in gastric cancer. Anticancer Res. 2014;34:2223–9.

    PubMed  CAS  Google Scholar 

  95. Prevete N, Liotti F, Illiano A, Amoresano A, Pucci P, de Paulis A, et al. Formyl peptide receptor 1 suppresses gastric cancer angiogenesis and growth by exploiting inflammation resolution pathways. Oncoimmunology. 2017;6:e1293213.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Xiang Y, Yao X, Chen K, Wang X, Zhou J, Gong W, et al. The G-protein coupled chemoattractant receptor FPR2 promotes malignant phenotype of human colon cancer cells. Am J Cancer Res. 2016;6:2599–610.

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Hou XL, Ji CD, Tang J, Wang YX, Xiang DF, Li HQ, et al. FPR2 promotes invasion and metastasis of gastric cancer cells and predicts the prognosis of patients. Sci Rep. 2017;7:3153.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Xie X, He J, Wang Q, Liu Y, Chen W, Shi K. FPR2 participates in epithelial ovarian cancer (EOC) progression through RhoA-mediated M2 macrophage polarization. J Ovarian Res. 2021;14:177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Xie X, Yang M, Ding Y, Yu L, Chen J. Formyl peptide receptor 2 expression predicts poor prognosis and promotes invasion and metastasis in epithelial ovarian cancer. Oncol Rep. 2017;38:3297–308.

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Chen K, Liu M, Liu Y, Yoshimura T, Shen W, Le Y, et al. Formylpeptide receptor-2 contributes to colonic epithelial homeostasis, inflammation, and tumorigenesis. J Clin Invest. 2013;123:1694–704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Liu Y, Chen K, Wang C, Gong W, Yoshimura T, Liu M, et al. Cell surface receptor FPR2 promotes antitumor host defense by limiting M2 polarization of macrophages. Cancer Res. 2013;73:550–60.

    Article  PubMed  CAS  Google Scholar 

  102. Qi J, Liu Y, Hu J, Lu L, Dou Z, Dai H, et al. Identification of FPR3 as a unique biomarker for targeted therapy in the immune microenvironment of breast cancer. Front Pharm. 2020;11:593247.

    Article  CAS  Google Scholar 

  103. Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene. 2003;22:7359–68.

    Article  PubMed  CAS  Google Scholar 

  104. Beers SA, Chan CH, French RR, Cragg MS, Glennie MJ. CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol. 2010;47:107–14.

    Article  PubMed  CAS  Google Scholar 

  105. Zhang C, Liu H, Tan Y, Xu Y, Li Y, Tong S, et al. MS4A6A is a new prognostic biomarker produced by macrophages in glioma patients. Front Immunol. 2022;13:865020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Fusco MJ, West HJ, Walko CM. Tumor mutation burden and cancer treatment. JAMA Oncol. 2021;7:316.

    Article  PubMed  Google Scholar 

  107. Zeng Y, Tan P, Ren C, Gao L, Chen Y, Hu S, et al. Comprehensive analysis of expression and prognostic value of MS4As in glioma. Front Genet. 2022;13:795844.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Yunna C, Mengru H, Lei W, Weidong C. Macrophage M1/M2 polarization. Eur J Pharm. 2020;877:173090.

    Article  Google Scholar 

  109. Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020;11:583084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP, Donners MM. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 2014;17:109–18.

    Article  PubMed  CAS  Google Scholar 

  111. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164:6166–73.

    Article  PubMed  CAS  Google Scholar 

  112. Zheng Z, Li H, Yang R, Guo H. Role of the membrane-spanning 4A gene family in lung adenocarcinoma. Front Genet. 2023;14:1162787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Li Y, Shen Z, Chai Z, Zhan Y, Zhang Y, Liu Z, et al. Targeting MS4A4A on tumour-associated macrophages restores CD8+ T-cell-mediated antitumour immunity. Gut. 2023;72:2307–2320.

    Article  PubMed  CAS  Google Scholar 

  114. Leonel AJ, Alvarez-Leite JI. Butyrate: implications for intestinal function. Curr Opin Clin Nutr Metab Care. 2012;15:474–9.

    Article  PubMed  CAS  Google Scholar 

  115. He L, Deng HY, Wang XC. Decreased expression of MS4A12 inhibits differentiation and predicts early stage survival in colon cancer. Neoplasma. 2017;64:65–73.

    Article  PubMed  CAS  Google Scholar 

  116. Ye L, Yao XD, Wan FN, Qu YY, Liu ZY, Shen XX, et al. MS4A8B promotes cell proliferation in prostate cancer. Prostate. 2014;74:911–22.

    Article  PubMed  CAS  Google Scholar 

  117. Sun L, Zhang Y, Zhang C. Distinct expression and prognostic value of MS4A in gastric cancer. Open Med (Wars). 2018;13:178–88.

    Article  PubMed  CAS  Google Scholar 

  118. Weber L, Al-Refae K, Ebbert J, Jägers P, Altmüller J, Becker C, et al. Activation of odorant receptor in colorectal cancer cells leads to inhibition of cell proliferation and apoptosis. PLoS ONE. 2017;12:e0172491.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Manteniotis S, Wojcik S, Göthert JR, Dürig J, Dührsen U, Gisselmann G, et al. Deorphanization and characterization of the ectopically expressed olfactory receptor OR51B5 in myelogenous leukemia cells. Cell Death Discov. 2016;2:16010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Rougé L, Chiang N, Steffek M, Kugel C, Croll TI, Tam C, et al. Structure of CD20 in complex with the therapeutic monoclonal antibody rituximab. Science. 2020;367:1224–30.

    Article  PubMed  Google Scholar 

  121. Guo L, Cheng J, Lian S, Liu Q, Lu Y, Zheng Y, et al. Structural basis of amine odorant perception by a mammal olfactory receptor. Nature. 2023;618:193–200.

    Article  PubMed  CAS  Google Scholar 

  122. Chen G, Wang X, Liao Q, Ge Y, Jiao H, Chen Q, et al. Structural basis for recognition of N-formyl peptides as pathogen-associated molecular patterns. Nat Commun. 2022;13:5232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Sadrekarimi H, Gardanova ZR, Bakhshesh M, Ebrahimzadeh F, Yaseri AF, Thangavelu L, et al. Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora. J Transl Med. 2022;20:301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Sears CL, Garrett WS. Microbes, microbiota, and colon cancer. Cell Host Microbe. 2014;15:317–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Seely KD, Morgan AD, Hagenstein LD, Florey GM, Small JM. Bacterial involvement in progression and metastasis of colorectal neoplasia. Cancers (Basel). 2022;14:1019.

    Article  PubMed  CAS  Google Scholar 

  126. van Vliet MJ, Tissing WJ, Dun CA, Meessen NE, Kamps WA, de Bont ES, et al. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infect Dis. 2009;49:262–70.

    Article  PubMed  Google Scholar 

  127. Viswanathan S, Parida S, Lingipilli BT, Krishnan R, Podipireddy DR, Muniraj N. Role of gut microbiota in breast cancer and drug resistance. Pathogens. 2023;12:468.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zucchi R, Chiellini G, Scanlan TS, Grandy DK. Trace amine-associated receptors and their ligands. Br J Pharm. 2006;149:967–78.

    Article  CAS  Google Scholar 

  129. Ugel S, De Sanctis F, Mandruzzato S, Bronte V. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest. 2015;125:3365–76.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42:717–27.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Thuyvan Luu for their helpful comments and English editing on the manuscript. The present research was supported by the research fund of Dankook University in 2023.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SJP and NL; original draft preparation, SJP; review, PLG; review and editing, NL; visualization, SJP; supervision, NL; funding acquisition, NL. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Namgyu Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.J., Greer, P.L. & Lee, N. From odor to oncology: non-canonical odorant receptors in cancer. Oncogene 43, 304–318 (2024). https://doi.org/10.1038/s41388-023-02908-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02908-y

Search

Quick links