Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ROS production by mitochondria: function or dysfunction?

Abstract

In eukaryotic cells, ATP generation is generally viewed as the primary function of mitochondria under normoxic conditions. Reactive oxygen species (ROS), in contrast, are regarded as the by-products of respiration, and are widely associated with dysfunction and disease. Important signaling functions have been demonstrated for mitochondrial ROS in recent years. Still, their chemical reactivity and capacity to elicit oxidative damage have reinforced the idea that ROS are the products of dysfunctional mitochondria that accumulate during disease. Several studies support a different model, however, by showing that: (1) limited oxygen availability results in mitochondria prioritizing ROS production over ATP, (2) ROS is an essential adaptive mitochondrial signal triggered by various important stressors, and (3) while mitochondria-independent ATP production can be easily engaged by most cells, there is no known replacement for ROS-driven redox signaling. Based on these observations and other evidence reviewed here, we highlight the role of ROS production as a major mitochondrial function involved in cellular adaptation and stress resistance. As such, we propose a rekindled view of ROS production as a primary mitochondrial function as essential to life as ATP production itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the mitochondrial electron transport chain featuring complexes (I – IV) and electron carriers.
Fig. 2: ROS driven mechanism of DNA mutation.
Fig. 3: Mechanisms of HIF1/2α degradation and stabilization.
Fig. 4: Examples of ROS driven activation of anti-apoptotic signaling cascades.
Fig. 5: Examples of mitochondrial ROS-driven mechanisms of stem/progenitor cell differentiation.
Fig. 6: Mitochondrial ROS-driven chromatin remodeling.

Similar content being viewed by others

References

  1. Fabian M, Wong WW, Gennis RB, Palmer G. Mass spectrometric determination of dioxygen bond splitting in the “peroxy” intermediate of cytochrome c oxidase. Proc Natl Acad Sci USA. 1999;96:13114–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Babcock GT. How oxygen is activated and reduced in respiration. Proc Natl Acad Sci USA. 1999;96:12971–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59:527–605.

    Article  PubMed  CAS  Google Scholar 

  4. Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J, et al. Mitochondrial reactive oxygen species regulate transforming growth factor-beta signaling. J Biol Chem. 2013;288:770–7.

    Article  PubMed  CAS  Google Scholar 

  5. Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GR, et al. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol. 2007;177:1029–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Stepanova A, Konrad C, Manfredi G, Springett R, Ten V, Galkin A. The dependence of brain mitochondria reactive oxygen species production on oxygen level is linear, except when inhibited by antimycin A. J Neurochem. 2019;148:731–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Roca FJ, Whitworth LJ, Prag HA, Murphy MP, Ramakrishnan L. Tumor necrosis factor induces pathogenic mitochondrial ROS in tuberculosis through reverse electron transport. Science. 2022;376:eabh2841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Grivennikova VG, Kareyeva AV, Vinogradov AD. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay. Redox Biol. 2018;17:192–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Scialo F, Sanz A. Coenzyme Q redox signalling and longevity. Free Radic Biol Med. 2021;164:187–205.

    Article  PubMed  CAS  Google Scholar 

  10. Herrero D, Tome M, Canon S, Cruz FM, Carmona RM, Fuster E, et al. Redox-dependent BMI1 activity drives in vivo adult cardiac progenitor cell differentiation. Cell Death Differ. 2018;25:809–22.

    Article  PubMed  CAS  Google Scholar 

  11. Chouchani ET, Kazak L, Spiegelman BM. Mitochondrial reactive oxygen species and adipose tissue thermogenesis: Bridging physiology and mechanisms. J Biol Chem. 2017;292:16810–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA. 1998;95:11715–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275:25130–8.

    Article  PubMed  CAS  Google Scholar 

  14. Bastin J, Sroussi M, Nemazanyy I, Laurent-Puig P, Mouillet-Richard S, Djouadi F. Downregulation of mitochondrial complex I induces ROS production in colorectal cancer subtypes that differently controls migration. J Transl Med. 2023;21:522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Han L, Zhang C, Wang D, Zhang J, Tang Q, Li MJ, et al. Retrograde regulation of mitochondrial fission and epithelial to mesenchymal transition in hepatocellular carcinoma by GCN5L1. Oncogene. 2023;42:1024–37.

    Article  PubMed  CAS  Google Scholar 

  16. Kinugasa H, Whelan KA, Tanaka K, Natsuizaka M, Long A, Guo A, et al. Mitochondrial SOD2 regulates epithelial-mesenchymal transition and cell populations defined by differential CD44 expression. Oncogene. 2015;34:5229–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bazopoulou D, Knoefler D, Zheng Y, Ulrich K, Oleson BJ, Xie L, et al. Developmental ROS individualizes organismal stress resistance and lifespan. Nature. 2019;576:301–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Palma FR, Ogata FT, Coelho DR, Pulakanti K, Meyer A, Huang Y et al. H3.1Cys96 oxidation by mitochondrial ROS promotes chromatin remodeling, breast cancer progression to metastasis and multi-drug resistance. bioRxiv (2022). 2022.2012.2001.517361.

  19. Baek Y, Woo TG, Ahn J, Lee D, Kwon Y, Park BJ, et al. Structural analysis of the overoxidized Cu/Zn-superoxide dismutase in ROS-induced ALS filament formation. Commun Biol. 2022;5:1085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Paviani V, Junqueira de Melo P, Avakin A, Di Mascio P, Ronsein GE, Augusto O. Human cataractous lenses contain cross-links produced by crystallin-derived tryptophanyl and tyrosyl radicals. Free Radic Biol Med. 2020;160:356–67.

    Article  PubMed  CAS  Google Scholar 

  21. Godoy LC, Munoz-Pinedo C, Castro L, Cardaci S, Schonhoff CM, King M, et al. Disruption of the M80-Fe ligation stimulates the translocation of cytochrome c to the cytoplasm and nucleus in nonapoptotic cells. Proc Natl Acad Sci USA. 2009;106:2653–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Connor KM, Subbaram S, Regan KJ, Nelson KK, Mazurkiewicz JE, Bartholomew PJ, et al. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem. 2005;280:16916–24.

    Article  PubMed  CAS  Google Scholar 

  23. Bonini MG, Siraki AG, Atanassov BS, Mason RP. Immunolocalization of hypochlorite-induced, catalase-bound free radical formation in mouse hepatocytes. Free Radic Biol Med. 2007;42:530–40.

    Article  PubMed  CAS  Google Scholar 

  24. Rocco-Machado N, Lai L, Kim G, He Y, Luczak ED, Anderson ME, et al. Oxidative stress-induced autonomous activation of the calcium/calmodulin-dependent kinase II involves disulfide formation in the regulatory domain. J Biol Chem. 2022;298:102579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rass U, Ahel I, West SC. Defective DNA repair and neurodegenerative disease. Cell. 2007;130:991–1004.

    Article  PubMed  CAS  Google Scholar 

  26. Horwitz E, Krogvold L, Zhitomirsky S, Swisa A, Fischman M, Lax T, et al. beta-cell DNA damage response promotes islet inflammation in type 1diabetes. Diabetes. 2018;67:2305–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Aydin E, Hallner A, Grauers Wiktorin H, Staffas A, Hellstrand K, Martner A. NOX2 inhibition reduces oxidative stress and prolongs survival in murine KRAS-induced myeloproliferative disease. Oncogene. 2019;38:1534–43.

    Article  PubMed  CAS  Google Scholar 

  28. Schroyer AL, Stimes NW, Abi Saab WF, Chadee DN. MLK3 phosphorylation by ERK1/2 is required for oxidative stress-induced invasion of colorectal cancer cells. Oncogene. 2018;37:1031–40.

    Article  PubMed  CAS  Google Scholar 

  29. Mangerich A, Knutson CG, Parry NM, Muthupalani S, Ye W, Prestwich E, et al. Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proc Natl Acad Sci USA. 2012;109:E1820–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. McBride TJ, Schneider JE, Floyd RA, Loeb LA. Mutations induced by methylene blue plus light in single-stranded M13mp2. Proc Natl Acad Sci USA. 1992;89:6866–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Michaels ML, Cruz C, Grollman AP, Miller JH. Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc Natl Acad Sci USA. 1992;89:7022–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tsuzuki T, Egashira A, Igarashi H, Iwakuma T, Nakatsuru Y, Tominaga Y, et al. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci USA. 2001;98:11456–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hyun JW, Choi JY, Zeng HH, Lee YS, Kim HS, Yoon SH, et al. Leukemic cell line, KG-1 has a functional loss of hOGG1 enzyme due to a point mutation and 8-hydroxydeoxyguanosine can kill KG-1. Oncogene. 2000;19:4476–9.

    Article  PubMed  CAS  Google Scholar 

  34. Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E, et al. A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene. 2002;21:3872–8.

    Article  PubMed  CAS  Google Scholar 

  35. Shi H, Hudson LG, Liu KJ. Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic Biol Med. 2004;37:582–93.

    Article  PubMed  CAS  Google Scholar 

  36. Guo ZM, Yang H, Hamilton ML, VanRemmen H, Richardson A. Effects of age and food restriction on oxidative DNA damage and antioxidant enzyme activities in the mouse aorta. Mech Ageing Dev. 2001;122:1771–86.

    Article  PubMed  CAS  Google Scholar 

  37. Choudhury S, Huang AY, Kim J, Zhou Z, Morillo K, Maury EA, et al. Somatic mutations in single human cardiomyocytes reveal age-associated DNA damage and widespread oxidative genotoxicity. Nat Aging. 2022;2:714–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Nakabeppu Y, Sakumi K, Sakamoto K, Tsuchimoto D, Tsuzuki T, Nakatsu Y. Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids. Biol Chem. 2006;387:373–9.

    Article  PubMed  CAS  Google Scholar 

  39. D’Errico M, Parlanti E, Dogliotti E. Mechanism of oxidative DNA damage repair and relevance to human pathology. Mutat Res. 2008;659:4–14.

    Article  PubMed  Google Scholar 

  40. Maynard S, Keijzers G, Hansen AM, Osler M, Molbo D, Bendix L, et al. Associations of subjective vitality with DNA damage, cardiovascular risk factors and physical performance. Acta Physiol (Oxf). 2015;213:156–70.

    Article  PubMed  CAS  Google Scholar 

  41. Vougioukalaki M, Demmers J, Vermeij WP, Baar M, Bruens S, Magaraki A, et al. Different responses to DNA damage determine ageing differences between organs. Aging Cell. 2022;21:e13562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Garinis GA, van der Horst GT, Vijg J, Hoeijmakers JH. DNA damage and ageing: new-age ideas for an age-old problem. Nat Cell Biol. 2008;10:1241–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Schumacher B, Garinis GA, Hoeijmakers JH. Age to survive: DNA damage and aging. Trends Genet. 2008;24:77–85.

    Article  PubMed  CAS  Google Scholar 

  44. Soest DMKV, Polderman PE, Toom WTFD, Zwakenberg S, Henau SD, Burgering BMT et al. Mitochondrial H2O2 release does not directly cause genomic DNA damage. bioRxiv (2023): 2023.2003.2029.534749.

  45. Zhang J, Simpson CM, Berner J, Chong HB, Fang J, Ordulu Z, et al. Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway. Cell. 2023;186:2361–2379.e2325.

    Article  PubMed  CAS  Google Scholar 

  46. Desai R, East DA, Hardy L, Faccenda D, Rigon M, Crosby J. Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv. 2020;6:eabc9955.

    Article  PubMed  CAS  Google Scholar 

  47. Fazeli G, Stopper H, Schinzel R, Ni CW, Jo H, Schupp N. Angiotensin II induces DNA damage via AT1 receptor and NADPH oxidase isoform Nox4. Mutagenesis. 2012;27:673–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bhardwaj V, Gokulan RC, Horvat A, Yermalitskaya L, Korolkova O, Washington KM, et al. Activation of NADPH oxidases leads to DNA damage in esophageal cells. Sci Rep. 2017;7:9956.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Forneris F, Binda C, Vanoni MA, Mattevi A, Battaglioli E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 2005;579:2203–7.

    Article  PubMed  CAS  Google Scholar 

  50. Hahm JY, Park J, Jang ES, Chi SW. 8-Oxoguanine: from oxidative damage to epigenetic and epitranscriptional modification. Exp Mol Med. 2022;54:1626–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Perillo B, Ombra MN, Bertoni A, Cuozzo C, Sacchetti S, Sasso A, et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science. 2008;319:202–6.

    Article  PubMed  CAS  Google Scholar 

  52. Smith KA, Schumacker PT. Sensors and signals: the role of reactive oxygen species in hypoxic pulmonary vasoconstriction. J Physiol. 2019;597:1033–43.

    Article  PubMed  CAS  Google Scholar 

  53. Kim JY, Kim JK, Kim H. ABCB7 simultaneously regulates apoptotic and non-apoptotic cell death by modulating mitochondrial ROS and HIF1alpha-driven NFkappaB signaling. Oncogene. 2020;39:1969–82.

    Article  PubMed  CAS  Google Scholar 

  54. Ren T, Zhang H, Wang J, Zhu J, Jin M, Wu Y, et al. MCU-dependent mitochondrial Ca(2+) inhibits NAD(+)/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells. Oncogene. 2017;36:5897–909.

    Article  PubMed  CAS  Google Scholar 

  55. Hamanaka RB, Glasauer A, Hoover P, Yang S, Blatt H, Mullen AR, et al. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci Signal. 2013;6:ra8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Palma FR, He C, Danes JM, Paviani V, Coelho DR, Gantner BN, et al. Mitochondrial superoxide dismutase: what the established, the intriguing, and the novel reveal about a key cellular redox switch. Antioxid Redox Signal. 2020;32:701–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hart PC, Mao M, de Abreu AL, Ansenberger-Fricano K, Ekoue DN, Ganini D, et al. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat Commun. 2015;6:6053.

    Article  PubMed  CAS  Google Scholar 

  58. Simon MC. Mitochondrial reactive oxygen species are required for hypoxic HIF alpha stabilization. Adv Exp Med Biol. 2006;588:165–70.

    Article  PubMed  Google Scholar 

  59. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1:401–8.

    Article  PubMed  CAS  Google Scholar 

  60. Emerling BM, Weinberg F, Snyder C, Burgess Z, Mutlu GM, Viollet B, et al. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic Biol Med. 2009;46:1386–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhao D, Yang J, Yang L. Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes. Oxid Med Cell Longev. 2017;2017:6437467.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kim JH, Choi TG, Park S, Yun HR, Nguyen NNY, Jo YH, et al. Mitochondrial ROS-derived PTEN oxidation activates PI3K pathway for mTOR-induced myogenic autophagy. Cell Death Differ. 2018;25:1921–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Wang Y, Zang QS, Liu Z, Wu Q, Maass D, Dulan G, et al. Regulation of VEGF-induced endothelial cell migration by mitochondrial reactive oxygen species. Am J Physiol Cell Physiol. 2011;301:C695–704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Felty Q, Singh KP, Roy D. Estrogen-induced G1/S transition of G0-arrested estrogen-dependent breast cancer cells is regulated by mitochondrial oxidant signaling. Oncogene. 2005;24:4883–93.

    Article  PubMed  CAS  Google Scholar 

  65. Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 2017;66:789–800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 2004;101:3329–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Carling D. AMPK signalling in health and disease. Curr Opin Cell Biol. 2017;45:31–7.

    Article  PubMed  CAS  Google Scholar 

  68. Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27:299–313.

    Article  PubMed  CAS  Google Scholar 

  69. Keith B, Johnson RS, Simon MC. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer. 2011;12:9–22.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Safran M, Kaelin WG Jr. HIF hydroxylation and the mammalian oxygen-sensing pathway. J Clin Invest. 2003;111:779–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lin X, David CA, Donnelly JB, Michaelides M, Chandel NS, Huang X, et al. A chemical genomics screen highlights the essential role of mitochondria in HIF-1 regulation. Proc Natl Acad Sci USA. 2008;105:174–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Sabharwal SS, Dudley VJ, Landwerlin C, Schumacker PT. H(2)O(2) transit through the mitochondrial intermembrane space promotes tumor cell growth in vitro and in vivo. J Biol Chem. 2023;299:104624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wang Y, Agarwal E, Bertolini I, Ghosh JC, Seo JH, Altieri DC. IDH2 reprograms mitochondrial dynamics in cancer through a HIF-1alpha-regulated pseudohypoxic state. FASEB J. 2019;33:13398–411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Parekh A, Das S, Parida S, Das CK, Dutta D, Mallick SK, et al. Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo. Oncogene. 2018;37:4546–61.

    Article  PubMed  CAS  Google Scholar 

  75. Mylonis I, Kourti M, Samiotaki M, Panayotou G, Simos G. Mortalin-mediated and ERK-controlled targeting of HIF-1alpha to mitochondria confers resistance to apoptosis under hypoxia. J Cell Sci. 2017;130:466–79.

    PubMed  CAS  Google Scholar 

  76. Flamant L, Notte A, Ninane N, Raes M, Michiels C. Anti-apoptotic role of HIF-1 and AP-1 in paclitaxel exposed breast cancer cells under hypoxia. Mol Cancer. 2010;9:191.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Rohwer N, Welzel M, Daskalow K, Pfander D, Wiedenmann B, Detjen K, et al. Hypoxia-inducible factor 1alpha mediates anoikis resistance via suppression of alpha5 integrin. Cancer Res. 2008;68:10113–20.

    Article  PubMed  CAS  Google Scholar 

  78. Whately KM, Voronkova MA, Maskey A, Gandhi J, Loskutov J, Choi H, et al. Nuclear Aurora-A kinase-induced hypoxia signaling drives early dissemination and metastasis in breast cancer: implications for detection of metastatic tumors. Oncogene. 2021;40:5651–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Casillas AL, Chauhan SS, Toth RK, Sainz AG, Clements AN, Jensen CC, et al. Direct phosphorylation and stabilization of HIF-1alpha by PIM1 kinase drives angiogenesis in solid tumors. Oncogene. 2021;40:5142–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Guillen-Quispe YN, Kim SJ, Saeidi S, Zhou T, Zheng J, Kim SH, et al. Oxygen-independent stabilization of HIF-2alpha in breast cancer through direct interaction with peptidyl-prolyl cis-trans isomerase NIMA-interacting 1. Free Radic Biol Med. 2023;207:296–307.

    Article  PubMed  CAS  Google Scholar 

  81. Zheng J, Kim SJ, Saeidi S, Kim SH, Fang X, Lee YH, et al. Overactivated NRF2 induces pseudohypoxia in hepatocellular carcinoma by stabilizing HIF-1alpha. Free Radic Biol Med. 2023;194:347–56.

    Article  PubMed  CAS  Google Scholar 

  82. Jarman EJ, Ward C, Turnbull AK, Martinez-Perez C, Meehan J, Xintaropoulou C, et al. HER2 regulates HIF-2alpha and drives an increased hypoxic response in breast cancer. Breast Cancer Res. 2019;21:10.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhang Y, Park J, Han SJ, Yang SY, Yoon HJ, Park I, et al. Redox regulation of tumor suppressor PTEN in cell signaling. Redox Biol. 2020;34:101553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Raman D, Pervaiz S. Redox inhibition of protein phosphatase PP2A: Potential implications in oncogenesis and its progression. Redox Biol. 2019;27:101105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Yamaguchi H, Wang HG. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene. 2001;20:7779–86.

    Article  PubMed  CAS  Google Scholar 

  86. Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 2001;15:1406–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Kennedy SG, Kandel ES, Cross TK, Hay N. Akt/Protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol. 1999;19:5800–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Datta SR, Ranger AM, Lin MZ, Sturgill JF, Ma YC, Cowan CW, et al. Survival factor-mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell. 2002;3:631–43.

    Article  PubMed  CAS  Google Scholar 

  89. Zhou H, Li XM, Meinkoth J, Pittman RN. Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol. 2000;151:483–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Zhang M, Zhang Q, Hu Y, Xu L, Jiang Y, Zhang C, et al. miR-181a increases FoxO1 acetylation and promotes granulosa cell apoptosis via SIRT1 downregulation. Cell Death Dis. 2017;8:e3088.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Berra E, Diaz-Meco MT, Moscat J. The activation of p38 and apoptosis by the inhibition of Erk is antagonized by the phosphoinositide 3-kinase/Akt pathway. J Biol Chem. 1998;273:10792–7.

    Article  PubMed  CAS  Google Scholar 

  92. Cerezo A, Martinez AC, Lanzarot D, Fischer S, Franke TF, Rebollo A. Role of Akt and c-Jun N-terminal kinase 2 in apoptosis induced by interleukin-4 deprivation. Mol Biol Cell. 1998;9:3107–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Okubo Y, Blakesley VA, Stannard B, Gutkind S, Le Roith D. Insulin-like growth factor-I inhibits the stress-activated protein kinase/c-Jun N-terminal kinase. J Biol Chem. 1998;273:25961–6.

    Article  PubMed  CAS  Google Scholar 

  94. Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene. 2008;27:6245–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Leppa S, Bohmann D. Diverse functions of JNK signaling and c-Jun in stress response and apoptosis. Oncogene. 1999;18:6158–62.

    Article  PubMed  CAS  Google Scholar 

  96. Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23:2838–49.

    Article  PubMed  CAS  Google Scholar 

  97. Deacon K, Mistry P, Chernoff J, Blank JL, Patel R. p38 Mitogen-activated protein kinase mediates cell death and p21-activated kinase mediates cell survival during chemotherapeutic drug-induced mitotic arrest. Mol Biol Cell. 2003;14:2071–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Robey RB, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene. 2006;25:4683–96.

    Article  PubMed  CAS  Google Scholar 

  99. Benbrook DM, Masamha CP. The pro-survival function of Akt kinase can be overridden or altered to contribute to induction of apoptosis. Curr Cancer Drug Targets. 2011;11:586–99.

    Article  PubMed  CAS  Google Scholar 

  100. Tang Y, Zhou H, Chen A, Pittman RN, Field J. The Akt proto-oncogene links Ras to Pak and cell survival signals. J Biol Chem. 2000;275:9106–9.

    Article  PubMed  CAS  Google Scholar 

  101. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96:857–68.

    Article  PubMed  CAS  Google Scholar 

  102. Bhagatte Y, Lodwick D, Storey N, Mitochondrial ROS. production and subsequent ERK phosphorylation are necessary for temperature preconditioning of isolated ventricular myocytes. Cell Death Dis. 2012;3:e345.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Park MA, Zhang G, Mitchell C, Rahmani M, Hamed H, Hagan MP, et al. Mitogen-activated protein kinase 1/2 inhibitors and 17-allylamino-17-demethoxygeldanamycin synergize to kill human gastrointestinal tumor cells in vitro via suppression of c-FLIP-s levels and activation of CD95. Mol Cancer Ther. 2008;7:2633–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Cassano S, Agnese S, D’Amato V, Papale M, Garbi C, Castagnola P, et al. Reactive oxygen species, Ki-Ras, and mitochondrial superoxide dismutase cooperate in nerve growth factor-induced differentiation of PC12 cells. J Biol Chem. 2010;285:24141–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Balmanno K, Cook SJ. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ. 2009;16:368–77.

    Article  PubMed  CAS  Google Scholar 

  106. Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58:621–31.

    Article  PubMed  CAS  Google Scholar 

  107. Ewings KE, Hadfield-Moorhouse K, Wiggins CM, Wickenden JA, Balmanno K, Gilley R, et al. ERK1/2-dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl-1 and Bcl-xL. EMBO J. 2007;26:2856–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Alvarez-Moya B, Lopez-Alcala C, Drosten M, Bachs O, Agell N. K-Ras4B phosphorylation at Ser181 is inhibited by calmodulin and modulates K-Ras activity and function. Oncogene. 2010;29:5911–22.

    Article  PubMed  CAS  Google Scholar 

  109. Agarwal S, Kazi JU, Mohlin S, Pahlman S, Ronnstrand L. The activation loop tyrosine 823 is essential for the transforming capacity of the c-Kit oncogenic mutant D816V. Oncogene. 2015;34:4581–90.

    Article  PubMed  CAS  Google Scholar 

  110. Leisner TM, Moran C, Holly SP, Parise LV. CIB1 prevents nuclear GAPDH accumulation and non-apoptotic tumor cell death via AKT and ERK signaling. Oncogene. 2013;32:4017–27.

    Article  PubMed  CAS  Google Scholar 

  111. Tsuji E, Tsuji Y, Fujiwara T, Ogata S, Tsukamoto K, Saku K. Splicing variant of Cdc42 interacting protein-4 disrupts beta-catenin-mediated cell-cell adhesion: expression and function in renal cell carcinoma. Biochem Biophys Res Commun. 2006;339:1083–8.

    Article  PubMed  CAS  Google Scholar 

  112. Oka S, Tsuzuki T, Hidaka M, Ohno M, Nakatsu Y, Sekiguchi M. Endogenous ROS production in early differentiation state suppresses endoderm differentiation via transient FOXC1 expression. Cell Death Discov. 2022;8:150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Tormos KV, Anso E, Hamanaka RB, Eisenbart J, Joseph J, Kalyanaraman B, et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011;14:537–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Yin M, O’Neill LAJ. The role of the electron transport chain in immunity. FASEB J. 2021;35:e21974.

    Article  PubMed  CAS  Google Scholar 

  115. Lin YC, Lin YC, Tsai ML, Liao WT, Hung CH. TSLP regulates mitochondrial ROS-induced mitophagy via histone modification in human monocytes. Cell Biosci. 2022;12:32.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Alshaabi H, Shannon N, Gravelle R, Milczarek S, Messier T, Cunniff B. Miro1-mediated mitochondrial positioning supports subcellular redox status. Redox Biol. 2021;38:101818.

    Article  PubMed  CAS  Google Scholar 

  117. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2:e1600200.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sishc BJ, Ding L, Nam TK, Heer CD, Rodman SN, Schoenfeld JD, et al. Avasopasem manganese synergizes with hypofractionated radiation to ablate tumors through the generation of hydrogen peroxide. Sci Transl Med. 2021;13:eabb3768.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Cheng G, Zhang Q, Pan J, Lee Y, Ouari O, Hardy M, et al. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat Commun. 2019;10:2205.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Cheng G, Hardy M, Kalyanaraman B. Antiproliferative effects of mitochondria-targeted N-acetylcysteine and analogs in cancer cells. Sci Rep. 2023;13:7254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the U.S. National Cancer Institute (R01CA216882 to MGB), National Institute of Environmental Health Sciences (R01ES028149 and R56ES033398 to MGB), National Heart Lung and Blood Institute (R01HL163820 to MGB and BGN) and National Cancer Institute (P30CA06553, Cancer Center Support Grant). We are also grateful for support from the H Foundation, the Eric and Liz Lefkofsky Foundation and the Associate Board of the Lurie Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

FRP, BNG, MJS, and BC wrote and edited the manuscript. FRP, MJS, and CK produced the figures and illustrations. SS and RL contributed text and references, critically reviewed and edited the manuscript. All authors discussed the ideas and searched the literature for relevant publications supporting the concepts reviewed in this manuscript.

Corresponding author

Correspondence to Marcelo G. Bonini.

Ethics declarations

Competing interests

BC has a financial interest (research support, equity and consultant fees) in RS Oncology, a clinical stage biotechnology company developing therapies targeting mitochondrial activity and redox signaling in cancer.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palma, F.R., Gantner, B.N., Sakiyama, M.J. et al. ROS production by mitochondria: function or dysfunction?. Oncogene 43, 295–303 (2024). https://doi.org/10.1038/s41388-023-02907-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02907-z

This article is cited by

Search

Quick links