Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting DGAT1 inhibits prostate cancer cells growth by inducing autophagy flux blockage via oxidative stress

Abstract

Impaired macroautophagy/autophagy flux has been implicated in the treatment of prostate cancer (PCa). However, the mechanism underlying autophagy dysregulation in PCa remains unknown. In the current study, we investigated the role of diacylglycerol acyltransferases 1 (DGAT1) and its potential effects on cellular energy homeostasis and autophagy flux in PCa. The results of immunohistochemical staining suggested that DGAT1 expression was positively corrected with tumor stage and node metastasis, indicating DGAT1 is an important factor involved in the development and progression of PCa. Furthermore, targeting DGAT1 remarkably inhibited cell proliferation in vitro and suppressed PCa growth in xenograft models by triggering severe oxidative stress and subsequently autophagy flux blockage. Mechanically, DGAT1 promoted PCa progression by maintaining cellular energy homeostasis, preserving mitochondrial function, protecting against reactive oxygen species, and subsequently promoting autophagy flux via regulating lipid droplet formation. Moreover, we found that fenofibrate exhibits as an upstream regulator of DGAT1. Fenofibrate performed its anti-PCa effect involved the aforementioned mechanisms, and partially dependent on the regulation of DGAT1. Collectively. These findings indicate that DGAT1 regulates PCa lipid droplets formation and is essential for PCa progression. Targeting DGAT1 might be a promising method to control the development and progression of PCa.

Schematic representation of DGAT1 affects autophagy flux by regulating lipid homeostasis and maintaining mitochondrial function in prostate cancer (PCa). PCa is characterized up-regulation of DGAT1, leading to the translocation of free fatty acids into lipid droplets, thereby preventing PCa cell from lipotoxicity. Inhibition of DGAT1 suppresses growth of PCa by inducing oxidative stress and subsequently autophagy flux blockage. Further, the current results revealed that fenofibrate exhibits as an upstream regulator of DGAT1, and fenofibrate plays an anti-PCa role partially dependent on the regulation of DGAT1, suggesting a potential therapeutic approach to ameliorate this refractory tumor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DGAT1 upregulation associates with tumor grade, stage, and metastasis in PCa.
Fig. 2: DGAT1, but not DGAT2, promotes lipid droplet formation and tumor cell growth.
Fig. 3: DGAT1 functions as an oncoprotein in PCa by promoting autophagy flux.
Fig. 4: DGAT1 is a key regulator in maintaining mitochondrial homeostasis and the excessive ROS production induced by DGAT1 inhibition contributes to autophagy flux blockage in PCa cells.
Fig. 5: Inhibition of DGAT1 significantly inhibits PCa tumor growth and induces autophagy flux blockage in vivo.
Fig. 6: Fenofibrate induces mitochondrial oxidative stress, autophagy flux blockage, and inhibits cells growth in PCa is partially due to the inhibition of DGAT1, in vitro and in vivo.

Similar content being viewed by others

Data availablity

Data are available from the corresponding author upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Shafi AA, Yen AE, Weigel NL. Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmcol Ther. 2013;140:223–38.

    Article  CAS  Google Scholar 

  3. Evans AJ. Treatment effects in prostate cancer. Mod Pathol. 2018;31:S110–121.

    Article  Google Scholar 

  4. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221:3–12.

    Article  CAS  PubMed Central  Google Scholar 

  5. Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330:1344–8.

    Article  CAS  PubMed Central  Google Scholar 

  6. Nguyen H, Yang J, Kung H, Shi X, Tilki D, Lara PN Jr, et al. Targeting autophagy overcomes enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene. 2014;33:4521–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kranzbühler B, Salemi S, Mortezavi A, Sulser T, Eberli D. Combined N-terminal androgen receptor and autophagy inhibition increases the antitumor effect in enzalutamide sensitive and enzalutamide resistant prostate cancer cells. Prostate. 2019;79:206–14.

    Article  Google Scholar 

  8. Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 2019;9:1167–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 2020;31:62–76.

    Article  CAS  PubMed  Google Scholar 

  10. Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J Exp Med. 2021;218:e20201606.

    Article  CAS  PubMed  Google Scholar 

  11. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature. 2009;458:1131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He A, Chen X, Tan M, Chen Y, Lu D, Zhang X, et al. Acetyl-CoA derived from hepatic peroxisomal β-Oxidation inhibits autophagy and promotes steatosis via mTORC1 activation. Mol Cell. 2020;79:30–42.e34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaushik S, Singh R, Cuervo AM. Autophagic pathways and metabolic stress. Diabetes Obes Metab. 2010;12:4–14.

    Article  CAS  PubMed Central  Google Scholar 

  14. Pham DV, Park PH. Adiponectin triggers breast cancer cell death via fatty acid metabolic reprogramming. J Exp Clin Cancer Res. 2022;41:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo W, Zhong W, Hao L, Dong H, Sun X, Yue R, et al. Fatty acids inhibit LAMP2-mediated autophagy flux via activating ER stress pathway in alcohol-related liver disease. Cell Mol Gastroenterol Hepatol. 2021;12:1599–615.

    Article  CAS  PubMed Central  Google Scholar 

  16. Park HS, Song JW, Park JH, Lim BK, Moon OS, Son HY, et al. TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation. Autophagy. 2021;17:2549–64.

    Article  CAS  Google Scholar 

  17. Tanaka S, Hikita H, Tatsumi T, Sakamori R, Nozaki Y, Sakane S, et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology. 2016;64:1994–2014.

    Article  CAS  PubMed  Google Scholar 

  18. Kawamura S, Matsushita Y, Kurosaki S, Tange M, Fujiwara N, Hayata Y, et al. Inhibiting SCAP/SREBP exacerbates liver injury and carcinogenesis in murine nonalcoholic steatohepatitis. J Clin Investig. 2022;132:e151895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coleman RA, Mashek DG. Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev. 2011;111:6359–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell. 2013;24:384–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng X, Geng F, Pan M, Wu X, Zhong Y, Wang C, et al. Targeting DGAT1 ameliorates glioblastoma by increasing fat catabolism and oxidative stress. Cell Metab. 2020;32:229–242.e228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862:1260–72.

    Article  CAS  PubMed  Google Scholar 

  23. Xia L, Wang Y, Cai S, Xu M. DGAT1 expression promotes ovarian cancer progression and is associated with poor prognosis. J Immunol Res. 2021;2021:6636791.

    Article  PubMed  PubMed Central  Google Scholar 

  24. He P, Cheng S, Hu F, Ma Z, Xia Y. Up-regulation of DGAT1 in cancer tissues and tumor-infiltrating macrophages influenced survival of patients with gastric cancer. BMC Cancer. 2021;21:252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou J, Simon JM, Liao C, Zhang C, Hu L, Zurlo G, et al. An oncogenic JMJD6-DGAT1 axis tunes the epigenetic regulation of lipid droplet formation in clear cell renal cell carcinoma. Mol Cell. 2022;82:3030–3044.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilcock DJ, Badrock AP, Wong CW, Owen R, Guerin M, Southam AD, et al. Oxidative stress from DGAT1 oncoprotein inhibition in melanoma suppresses tumor growth when ROS defenses are also breached. Cell Rep. 2022;39:110995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nguyen TB, Olzmann JA. Lipid droplets and lipotoxicity during autophagy. Autophagy. 2017;13:2002–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang X, Wu D, Wang C, Luo Y, Ding X, Yang X, et al. Sustained activation of autophagy suppresses adipocyte maturation via a lipolysis-dependent mechanism. Autophagy. 2020;16:1668–82.

    Article  CAS  PubMed  Google Scholar 

  29. Long M, Sanchez-Martinez A, Longo M, Suomi F, Stenlund H, Johansson AI, et al. DGAT1 activity synchronises with mitophagy to protect cells from metabolic rewiring by iron depletion. EMBO J. 2022;41:e109390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galbraith L, Leung HY, Ahmad I. Lipid pathway deregulation in advanced prostate cancer. Pharmacol Res. 2018;131:177–84.

    Article  CAS  PubMed  Google Scholar 

  31. Bader DA, McGuire SE. Tumour metabolism and its unique properties in prostate adenocarcinoma. Nat Rev Urol. 2020;17:214–31.

    Article  PubMed  Google Scholar 

  32. Zhang Q, Cao S, Qiu F, Kang N. Incomplete autophagy: trouble is a friend. Med Res Rev. 2022;42:1545–87.

    Article  CAS  PubMed  Google Scholar 

  33. Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci. 2015;40:141–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 2021;21:71–88.

    Article  CAS  PubMed  Google Scholar 

  35. Porporato PE, Filigheddu N, Pedro JMB, Kroemer G, Galluzzi L. Mitochondrial metabolism and cancer. Cell Res. 2018;28:265–80.

    Article  CAS  PubMed  Google Scholar 

  36. Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22:377–88.

    Article  CAS  PubMed  Google Scholar 

  37. Lian X, Wang G, Zhou H, Zheng Z, Fu Y, Cai L. Anticancer properties of fenofibrate: a repurposing use. J Cancer. 2018;9:1527–37.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kong R, Wang N, Han W, Bao W, Lu J. Fenofibrate exerts antitumor effects in colon cancer via regulation of DNMT1 and CDKN2A. PPAR Res. 2021;2021:6663782.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Luty M, Piwowarczyk K, Łabędź-Masłowska A, Wróbel T, Szczygieł M, Catapano J, et al. Fenofibrate augments the sensitivity of drug-resistant prostate cancer cells to docetaxel. Cancers. 2019;11:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li T, Zhang Q, Zhang J, Yang G, Shao Z, Luo J, et al. Fenofibrate induces apoptosis of triple-negative breast cancer cells via activation of NF-κB pathway. BMC Cancer. 2014;14:96.

    Article  PubMed Central  Google Scholar 

  41. Lian X, Gu J, Gao B, Li Y, Damodaran C, Wei W, et al. Fenofibrate inhibits mTOR-p70S6K signaling and simultaneously induces cell death in human prostate cancer cells. Biochem Biophys Res Commun. 2018;496:70–75.

    Article  CAS  PubMed  Google Scholar 

  42. Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42.

    Article  CAS  PubMed  Google Scholar 

  43. Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368:eaaw5473.

    Article  CAS  PubMed Central  Google Scholar 

  44. Zadra G, Ribeiro CF, Chetta P, Ho Y, Cacciatore S, Gao X, et al. Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer. Proc Natl Acad Sci USA. 2019;116:631–40.

    Article  CAS  Google Scholar 

  45. Gang X, Yang Y, Zhong J, Jiang K, Pan Y, Karnes RJ, et al. P300 acetyltransferase regulates fatty acid synthase expression, lipid metabolism and prostate cancer growth. Oncotarget. 2016;7:15135–49.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Watt MJ, Clark AK, Selth LA, Haynes VR, Lister N, Rebello R, et al. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci Transl Med. 2019;11:eaau5758.

    Article  CAS  PubMed  Google Scholar 

  47. Nazim UM, Yin H, Park SY. Downregulation of c‑FLIP and upregulation of DR‑5 by cantharidin sensitizes TRAIL‑mediated apoptosis in prostate cancer cells via autophagy flux. Int J Mol Med. 2020;46:280–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Thomé MP, Pereira LC, Onzi GR, Rohden F, Ilha M, Guma FT, et al. Dipyridamole impairs autophagic flux and exerts antiproliferative activity on prostate cancer cells. Exp Cell Res. 2019;382:111456.

    Article  PubMed  Google Scholar 

  49. Mahalingam D, Mita M, Sarantopoulos J, Wood L, Amaravadi RK, Davis LE, et al. Combined autophagy and HDAC inhibition: a phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy. 2014;10:1403–14.

    Article  CAS  PubMed Central  Google Scholar 

  50. Mitra R, Le TT, Gorjala P, Goodman OB Jr. Positive regulation of prostate cancer cell growth by lipid droplet forming and processing enzymes DGAT1 and ABHD5. BMC Cancer. 2017;17:631.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332:1429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen X, Guan Y, Zhang Y, Jia Y, Li W, Guo C, et al. Programmed cell death 4 modulates lysosomal function by inhibiting TFEB translation. Cell Death Differ. 2021;28:1237–50.

    Article  CAS  PubMed  Google Scholar 

  53. He R, Wang M, Zhao C, Shen M, Yu Y, He L, et al. TFEB-driven autophagy potentiates TGF-β induced migration in pancreatic cancer cells. J Exp Clin Cancer Res. 2019;38:340.

    Article  PubMed Central  Google Scholar 

  54. Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci. 2011;36:30–38.

    Article  CAS  Google Scholar 

  55. Yuan Y, Chen Y, Peng T, Li L, Zhu W, Liu F, et al. Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition. Clin Sci. 2019;133:1759–77.

    Article  CAS  Google Scholar 

  56. McKeage K, Keating GM. Fenofibrate: a review of its use in dyslipidaemia. Drugs. 2011;71:1917–46.

    Article  CAS  PubMed  Google Scholar 

  57. Tao T, Zhao F, Xuan Q, Shen Z, Xiao J, Shen Q. Fenofibrate inhibits the growth of prostate cancer through regulating autophagy and endoplasmic reticulum stress. Biochem Biophys Res Commun. 2018;503:2685–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Xin Zhou (The Institute of Cancer Research of Jilin University) for helpful discussions and his valuable assistance in revising the paper.

Funding

This work was supported by grants from the National Natural Science Foundation of China (82272993 and 81972372 belonging to XG), the grant from Jilin Medical and Health Talent Project (JLSCZD2019-016 belonging to GW), the grant from the Department Science and Technology Department of Jilin Province (20190901006JC, YDZJ202202CXJD042 belonging to GW and 20210101355JC belonging to TZ), the grant from the Doctor of excellence program of the First Hospital of Jilin University (JDYY-DEP-2022021 belonging to HC), the grant from the 14th Youth Project of the First Hospital of Jilin University (JDYY14202301 belonging to HC).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: HC, GW and XG; Development of methodology: HC, YW, TZ, XZ, MH, XR and YW; Acquisition of data: HC, YW, TZ, YW, MH; Analysis and interpretation of data: HC, MH, XR, YW and YW; Writing, review, and/or revision of the manuscript: HC, SY, GW and XG; Administrative, technical, or material support: HC, YW, TZ, GW and XG; Study supervision: GW and XG.

Corresponding authors

Correspondence to Guixia Wang or Xiaokun Gang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical

Human samples study was approved by the First Hospital of Jilin University Ethics Reviews Board. The patients were given written informed consent to take part, and patients consented to the use of material and clinical information for research purposes. Subcutaneous xenograft study was approved by the First Hospital of Jilin University of Animal Ethics Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Wang, Y., Zhou, T. et al. Targeting DGAT1 inhibits prostate cancer cells growth by inducing autophagy flux blockage via oxidative stress. Oncogene 43, 136–150 (2024). https://doi.org/10.1038/s41388-023-02878-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02878-1

Search

Quick links