Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RCCD1 promotes breast carcinogenesis through regulating hypoxia-associated mitochondrial homeostasis

Abstract

Regulator of chromosome condensation domain-containing protein 1 (RCCD1), previously reported as a partner of histone H3K36 demethylase KDM8 involved in chromosome segregation, has been identified as a potential driver for breast cancer in a recent transcriptome-wide association study. We report here that, unexpectedly, RCCD1 is also localized in mitochondria. We show that RCCD1 resides in the mitochondrial matrix, where it interacts with the mitochondrial contact site/cristae organizing system (MICOS) and mitochondrial DNA (mtDNA) to regulate mtDNA transcription, oxidative phosphorylation, and the production of reactive oxygen species. Interestingly, RCCD1 is upregulated under hypoxic conditions, leading to decreased generation of reactive oxygen species and alleviated apoptosis favoring cancer cell survival. We show that RCCD1 promotes breast cancer cell proliferation in vitro and accelerates breast tumor growth in vivo. Indeed, RCCD1 is overexpressed in breast carcinomas, and its level of expression is associated with aggressive breast cancer phenotypes and poor patient survival. Our study reveals an additional dimension of RCCD1 functionality in regulating mitochondrial homeostasis, whose dysregulation inflicts pathologic states such as breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RCCD1 Is Localized in Mitochondrial Matrix and Interacts with the MICOS Complex.
Fig. 2: RCCD1 Directly Binds to mtDNA in a Sequence-independent Manner.
Fig. 3: RCCD1 Suppresses mtDNA Transcription to Downregulate mtDNA-encoded Oxidative Phosphorylation Enzymes.
Fig. 4: RCCD1 Regulates Mitochondrial Bioenergetics and ROS Production.
Fig. 5: RCCD1 Is Upregulated under Hypoxia by HIF1α.
Fig. 6: RCCD1 Inhibits Cell Apoptosis under Normoxia and Hypoxia.
Fig. 7: Overexpression of RCCD1 Promotes Breast Carcinogenesis in vivo.

Similar content being viewed by others

Data availability

RNA-seq data are available in the GEO database under accession number GSE219134.

References

  1. Hadjebi O, Casas-Terradellas E, Garcia-Gonzalo FR, Rosa JL. The RCC1 superfamily: from genes, to function, to disease. Biochim Biophys Acta. 2008;1783:1467–79.

    Article  CAS  PubMed  Google Scholar 

  2. Nishimoto T, Eilen E, Basilico C. Premature of chromosome condensation in a ts DNA- mutant of BHK cells. Cell. 1978;15:475–83.

    Article  CAS  PubMed  Google Scholar 

  3. Ohtsubo M, Kai R, Furuno N, Sekiguchi T, Sekiguchi M, Hayashida H, et al. Isolation and characterization of the active cDNA of the human cell cycle gene (RCC1) involved in the regulation of onset of chromosome condensation. Genes Dev. 1987;1:585–93.

    Article  CAS  PubMed  Google Scholar 

  4. Wu J, He Z, Yang XM, Li KL, Wang DL, Sun FL. RCCD1 depletion attenuates TGF-beta-induced EMT and cell migration by stabilizing cytoskeletal microtubules in NSCLC cells. Cancer Lett. 2017;400:18–29.

    Article  CAS  PubMed  Google Scholar 

  5. Makde RD, England JR, Yennawar HP, Tan S. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature. 2010;467:562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nemergut ME, Mizzen CA, Stukenberg T, Allis CD, Macara IG. Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B. Science. 2001;292:1540–3.

    Article  CAS  PubMed  Google Scholar 

  7. Marcon E, Ni Z, Pu S, Turinsky AL, Trimble SS, Olsen JB, et al. Human-chromatin-related protein interactions identify a demethylase complex required for chromosome segregation. Cell Rep. 2014;8:297–310.

    Article  CAS  PubMed  Google Scholar 

  8. Wu L, Shi W, Long J, Guo X, Michailidou K, Beesley J, et al. A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nat Genet. 2018;50:968–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheng Z, Hou S, Wu Y, Wang X, Sun Y, Liu B, et al. LINC01419 promotes cell proliferation and metastasis in lung adenocarcinoma via sponging miR-519b-3p to up-regulate RCCD1. Biochem Biophys Res Commun. 2019;520:107–14.

    Article  CAS  PubMed  Google Scholar 

  10. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148:1145–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van der Laan M, Horvath SE, Pfanner N. Mitochondrial contact site and cristae organizing system. Curr Opin Cell Biol. 2016;41:33–42.

    Article  PubMed  Google Scholar 

  12. Gustafsson CM, Falkenberg M, Larsson NG. Maintenance and Expression of Mammalian Mitochondrial DNA. Annu Rev Biochem. 2016;85:133–60.

    Article  CAS  PubMed  Google Scholar 

  13. Gilkerson R, Bravo L, Garcia I, Gaytan N, Herrera A, Maldonado A, et al. The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harb Perspect Biol. 2013;5:a011080.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee SR, Han J. Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome. Oxid Med Cell Longev. 2017;2017:8060949.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Alam TI, Kanki T, Muta T, Ukaji K, Abe Y, Nakayama H, et al. Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res. 2003;31:1640–5.

    Article  CAS  PubMed  Google Scholar 

  16. Jimenez-Menendez N, Fernandez-Millan P, Rubio-Cosials A, Arnan C, Montoya J, Jacobs HT, et al. Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat. Nat Struct Mol Biol. 2010;17:891–3.

    Article  CAS  PubMed  Google Scholar 

  17. Ngo HB, Kaiser JT, Chan DC. The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat Struct Mol Biol. 2011;18:1290–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ngo HB, Lovely GA, Phillips R, Chan DC. Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation. Nat Commun. 2014;5:3077.

    Article  PubMed  Google Scholar 

  19. Bohnert M, Zerbes RM, Davies KM, Muhleip AW, Rampelt H, Horvath SE, et al. Central Role of Mic10 in the Mitochondrial Contact Site and Cristae Organizing System. Cell Metab. 2015;21:747–55.

    Article  CAS  PubMed  Google Scholar 

  20. Guarani V, McNeill EM, Paulo JA, Huttlin EL, Frohlich F, Gygi SP, et al. QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology. Elife. 2015;4:e06265.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Itoh K, Tamura Y, Iijima M, Sesaki H. Effects of Fcj1-Mos1 and mitochondrial division on aggregation of mitochondrial DNA nucleoids and organelle morphology. Mol Biol Cell. 2013;24:1842–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaurov I, Vancova M, Schimanski B, Cadena LR, Heller J, Bily T, et al. The Diverged Trypanosome MICOS Complex as a Hub for Mitochondrial Cristae Shaping and Protein Import. Curr Biol. 2018;28:3393.

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Ruan Y, Zhang K, Jian F, Hu C, Miao L, et al. Mic60/Mitofilin determines MICOS assembly essential for mitochondrial dynamics and mtDNA nucleoid organization. Cell Death Differ. 2016;23:380–92.

    Article  CAS  PubMed  Google Scholar 

  24. von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T, et al. Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell. 2011;21:694–707.

    Article  PubMed  Google Scholar 

  25. Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA, Chacinska A, et al. Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J Cell Biol. 2014;204:1083–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Quintana-Cabrera R, Mehrotra A, Rigoni G, Soriano ME. Who and how in the regulation of mitochondrial cristae shape and function. Biochem Biophys Res Commun. 2018;500:94–101.

    Article  CAS  PubMed  Google Scholar 

  27. Jans DC, Wurm CA, Riedel D, Wenzel D, Stagge F, Deckers M, et al. STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria. Proc Natl Acad Sci USA. 2013;110:8936–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pape JK, Stephan T, Balzarotti F, Buchner R, Lange F, Riedel D, et al. Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins. Proc Natl Acad Sci USA. 2020;117:20607–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kozjak-Pavlovic V. The MICOS complex of human mitochondria. Cell Tissue Res. 2017;367:83–93.

    Article  CAS  PubMed  Google Scholar 

  30. Gieffers C, Korioth F, Heimann P, Ungermann C, Frey J. Mitofilin is a transmembrane protein of the inner mitochondrial membrane expressed as two isoforms. Exp Cell Res. 1997;232:395–9.

    Article  CAS  PubMed  Google Scholar 

  31. John GB, Shang Y, Li L, Renken C, Mannella CA, Selker JM, et al. The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell. 2005;16:1543–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burke PJ. Mitochondria, Bioenergetics and Apoptosis in Cancer. Trends Cancer. 2017;3:857–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Korolchuk VI, Miwa S, Carroll B, von Zglinicki T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine. 2017;21:7–13.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer. 2014;14:709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Quan Y, Xin Y, Tian G, Zhou J, Liu X. Mitochondrial ROS-Modulated mtDNA: A Potential Target for Cardiac Aging. Oxid Med Cell Longev. 2020;2020:9423593.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Levine AJ. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes (vol 330, pg 1340, 2010). Science 2012;336:670–670.

  37. Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64.

    Article  CAS  PubMed  Google Scholar 

  38. Stanicka J, Russell EG, Woolley JF, Cotter TG. NADPH oxidase-generated hydrogen peroxide induces DNA damage in mutant FLT3-expressing leukemia cells. J Biol Chem. 2015;290:9348–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Farrow KN, Lee KJ, Perez M, Schriewer JM, Wedgwood S, Lakshminrusimha S, et al. Brief hyperoxia increases mitochondrial oxidation and increases phosphodiesterase 5 activity in fetal pulmonary artery smooth muscle cells. Antioxid Redox Signal. 2012;17:460–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Waypa GB, Marks JD, Guzy RD, Mungai PT, Schriewer JM, Dokic D, et al. Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med. 2013;187:424–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fuhrmann DC, Brune B. Mitochondrial composition and function under the control of hypoxia. Redox Biol. 2017;12:208–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wallace DC Mitochondria and cancer (2012).

  43. Zhou D, Zhong S, Han X, Liu D, Fang H, Wang Y. Protocol for mitochondrial isolation and sub-cellular localization assay for mitochondrial proteins. STAR Protoc. 2023;4:102088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen T, Muratore TL, Schaner-Tooley CE, Shabanowitz J, Hunt DF, Macara IG. N-terminal alpha-methylation of RCC1 is necessary for stable chromatin association and normal mitosis. Nat Cell Biol. 2007;9:596–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bonekamp NA, Larsson NG. SnapShot: Mitochondrial Nucleoid. Cell. 2018;172:388–388.e381.

    Article  CAS  PubMed  Google Scholar 

  46. Kopek BG, Shtengel G, Xu CS, Clayton DA, Hess HF. Correlative 3D superresolution fluorescence and electron microscopy reveal the relationship of mitochondrial nucleoids to membranes. Proc Natl Acad Sci USA. 2012;109:6136–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stephan T, Roesch A, Riedel D, Jakobs S. Live-cell STED nanoscopy of mitochondrial cristae. Sci Rep. 2019;9:12419.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gerhold JM, Cansiz-Arda S, Lohmus M, Engberg O, Reyes A, van Rennes H, et al. Human Mitochondrial DNA-Protein Complexes Attach to a Cholesterol-Rich Membrane Structure. Sci Rep. 2015;5:15292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rajala N, Gerhold JM, Martinsson P, Klymov A, Spelbrink JN. Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication. Nucleic Acids Res. 2014;42:952–67.

    Article  CAS  PubMed  Google Scholar 

  50. Arguello T, Peralta S, Antonicka H, Gaidosh G, Diaz F, Tu YT, et al. ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Cell Rep. 2021;37:110139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peralta S, Goffart S, Williams SL, Diaz F, Garcia S, Nissanka N, et al. ATAD3 controls mitochondrial cristae structure in mouse muscle, influencing mtDNA replication and cholesterol levels. J Cell Sci. 2018;131:jcs217075.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Archer SL. Mitochondrial dynamicsmitochondrial fission and fusion in human diseases. N Engl J Med. 2013;369:2236–51.

    Article  CAS  PubMed  Google Scholar 

  53. van der Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. 2013;5:a011072.

    PubMed  PubMed Central  Google Scholar 

  54. Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11:872–84.

    Article  CAS  PubMed  Google Scholar 

  55. Chatterjee A, Seyfferth J, Lucci J, Gilsbach R, Preissl S, Böttinger L, et al. MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria. Cell. 2016;167:722–738.e723.

    Article  CAS  PubMed  Google Scholar 

  56. Kaufman BA, Durisic N, Mativetsky JM, Costantino S, Hancock MA, Grutter P, et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol cell. 2007;18:3225–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  59. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (2021YFA1300603 to YS and 2019YFA0508904 to JL) from the Ministry of Science and Technology of China, and grants (82188102 and 31991164 to YS and 82273155 to JL) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

YP, JL, and YS conceived the project, designed experiments, analyzed data and wrote the paper. YP, XL, XC, Lu X, LQ, SG, YW, XW, JW, DY, YZ, LS performed experiments and analyzed data. Xinhua L performed bioinformatics analysis. Jianying L instructed pathological analysis. All authors reviewed the paper.

Corresponding authors

Correspondence to Jing Liang or Yongfeng Shang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All studies were approved by the Ethics Committee of Peking University Health Science Center. Animal handling and procedures were approved by Peking University Health Science Center Institutional Animal Care and Use Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Liu, X., Liu, X. et al. RCCD1 promotes breast carcinogenesis through regulating hypoxia-associated mitochondrial homeostasis. Oncogene 42, 3684–3697 (2023). https://doi.org/10.1038/s41388-023-02877-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02877-2

Search

Quick links