Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic control of cancer metastasis: role of amino acids at secondary organ sites

Abstract

Most cancer-related deaths are caused by the metastases, which commonly develop at multiple organ sites including the brain, bone, and lungs. Despite longstanding observations that the spread of cancer is not random, our understanding of the mechanisms that underlie metastatic spread to specific organs remains limited. However, metabolism has recently emerged as an important contributor to metastasis. Amino acids are a significant nutrient source to cancer cells and their metabolism which can serve to fuel biosynthetic pathways capable of facilitating cell survival and tumor expansion while also defending against oxidative stress. Compared to the primary tumor, each of the common metastatic sites exhibit vastly different nutrient compositions and environmental stressors, necessitating the need of cancer cells to metabolically thrive in their new environment during colonization and outgrowth. This review seeks to summarize the current literature on amino acid metabolism pathways that support metastasis to common secondary sites, including impacts on immune responses. Understanding the role of amino acids in secondary organ sites may offer opportunities for therapeutic inhibition of cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Amino acid metabolic pathways critical in metastasis and key Inhibitors.
Fig. 2: Amino acid metabolism in the metastatic cascade.
Fig. 3: Amino acid metabolism in secondary niches.

Similar content being viewed by others

References

  1. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, et al. Multistep nature of metastatic inefficiency. Am J Pathol. 1998;153:865–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mosier JA, Schwager SC, Boyajian DA, Reinhart-King CA. Cancer cell metabolic plasticity in migration and metastasis. Clin Exp Metastasis. 2021;38:343–59.

    Article  CAS  PubMed  Google Scholar 

  3. Zanotelli MR, Zhang J, Reinhart-King CA. Mechanoresponsive metabolism in cancer cell migration and metastasis. Cell Metab. 2021;33:1307–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arner EN, Rathmell JC. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell. 2023;41:421–33.

    Article  CAS  PubMed  Google Scholar 

  5. Bian X, Liu R, Meng Y, Xing D, Xu D, Lu Z. Lipid metabolism and cancer. J Exp Med. 2021;218:e20201606.

    Article  CAS  PubMed  Google Scholar 

  6. Wang C, Luo D. The metabolic adaptation mechanism of metastatic organotropism. Exp Hematol Oncol. 2021;10:30.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ebert D, Haller RG, Walton ME. Energy contribution of octanoate to intact rat brain metabolism measured by 13 C nuclear magnetic resonance spectroscopy. J Neurosci. 2003;23:5928–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schild T, Low V, Blenis J, Gomes AP. Unique metabolic adaptations dictate distal organ-specific metastatic colonization. Cancer Cell. 2018;33:347–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang T, Suo C, Zheng C, Zhang H. Hypoxia and metabolism in metastasis. In: Gilkes DM (ed). Hypoxia and cancer metastasis. Springer International Publishing: Cham, 2019, pp 87–95.

  10. Vaghari‐Tabari M, Ferns GA, Qujeq D, Andevari AN, Sabahi Z, Moein S. Signaling, metabolism, and cancer: an important relationship for therapeutic intervention. J Cell Physiol. 2021;236:5512–32.

    Article  PubMed  Google Scholar 

  11. Ghanavat M, Shahrouzian M, Deris Zayeri Z, Banihashemi S, Kazemi SM, Saki N. Digging deeper through glucose metabolism and its regulators in cancer and metastasis. Life Sci. 2021;264:118603.

    Article  CAS  PubMed  Google Scholar 

  12. Zanotelli MR, Goldblatt ZE, Miller JP, Bordeleau F, Li J, VanderBurgh JA, et al. Regulation of ATP utilization during metastatic cell migration by collagen architecture. Mol Biol Cell. 2018;29:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang L, Moss T, Mangala LS, Marini J, Zhao H, Wahlig S, et al. Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol Syst Biol. 2014;10:728.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rodrigues MF, Obre E, De Melo FHM, Santos GC, Galina A, Jasiulionis MG, et al. Enhanced OXPHOS, glutaminolysis and β-oxidation constitute the metastatic phenotype of melanoma cells. Biochem J. 2016;473:703–15.

    Article  CAS  PubMed  Google Scholar 

  15. Xiang L, Mou J, Shao B, Wei Y, Liang H, Takano N, et al. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization. Cell Death Dis. 2019;10:40.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chan Y-C, Chang Y-C, Chuang H-H, Yang Y-C, Lin Y-F, Huang M-S, et al. Overexpression of PSAT1 promotes metastasis of lung adenocarcinoma by suppressing the IRF1-IFNγ axis. Oncogene. 2020;39:2509–22.

    Article  CAS  PubMed  Google Scholar 

  17. Knott SRV, Wagenblast E, Khan S, Kim SY, Soto M, Wagner M, et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature. 2018;554:378–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Du F, Chen J, Liu H, Cai Y, Cao T, Han W, et al. SOX12 promotes colorectal cancer cell proliferation and metastasis by regulating asparagine synthesis. Cell Death Dis. 2019;10:239.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Soflaee MH, Kesavan R, Sahu U, Tasdogan A, Villa E, Djabari Z, et al. Purine nucleotide depletion prompts cell migration by stimulating the serine synthesis pathway. Nat Commun. 2022;13:2698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jin L, Chun J, Pan C, Kumar A, Zhang G, Ha Y, et al. The PLAG1-GDH1 axis promotes anoikis resistance and tumor metastasis through CamKK2-AMPK signaling in LKB1-deficient lung cancer. Mol Cell. 2018;69:87–99.e7.

    Article  CAS  PubMed  Google Scholar 

  21. Jin H, Qiao F, Chen L, Lu C, Xu L, Gao X. Serum metabolomic signatures of lymph node metastasis of esophageal squamous cell carcinoma. J Proteome Res. 2014;13:4091–103.

    Article  CAS  PubMed  Google Scholar 

  22. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69:7507–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lamb R, Ozsvari B, Bonuccelli G, Smith DL, Pestell RG, Martinez-Outschoorn UE, et al. Dissecting tumor metabolic heterogeneity: telomerase and large cell size metabolically define a sub-population of stem-like, mitochondrial-rich, cancer cells. Oncotarget. 2015;6:21892–905.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lamb R, Harrison H, Smith DL, Townsend PA, Jackson T, Ozsvari B, et al. Targeting tumor-initiating cells: eliminating anabolic cancer stem cells with inhibitors of protein synthesis or by mimicking caloric restriction. Oncotarget. 2015;6:4585–601.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tan AS, Baty JW, Berridge MV. The role of mitochondrial electron transport in tumorigenesis and metastasis. Biochim Biophys Acta BBA—Gen Subj. 2014;1840:1454–63.

    Article  CAS  Google Scholar 

  26. Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci. 2006;103:1283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davis RT, Blake K, Ma D, Gabra MBI, Hernandez GA, Phung AT, et al. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat Cell Biol. 2020;22:310–20.

    Article  CAS  PubMed  Google Scholar 

  28. Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun. 2018;9:3588.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Basnet H, Tian L, Ganesh K, Huang Y-H, Macalinao DG, Brogi E, et al. Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization. eLife. 2019;8:e43627.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shestov AA, Emir UE, Kumar A, Henry P-G, Seaquist ER, Öz G. Simultaneous measurement of glucose transport and utilization in the human brain. Am J Physiol-Endocrinol Metab. 2011;301:E1040–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gruetter R, Novotny EJ, Boulware SD, Rothman DL, Mason GF, Shulman GI, et al. Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc Natl Acad Sci. 1992;89:1109–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yudkoff M, Nissim I, Daikhin Y, Lin Z-P, Nelson D, Pleasure D, et al. Brain glutamate metabolism: neuronal-astroglial relationships. Dev Neurosci. 1993;15:343–50.

    Article  CAS  PubMed  Google Scholar 

  33. Daikhin Y, Yudkoff M. Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr. 2000;130:1026S–31S.

    Article  CAS  PubMed  Google Scholar 

  34. Natarajan SK, Venneti S. Glutamine metabolism in brain tumors. Cancers. 2019;11:1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen W. Clinical applications of PET in brain tumors. J Nucl Med. 2007;48:1468–81.

    Article  PubMed  Google Scholar 

  36. Chen J, Lee H-J, Wu X, Huo L, Kim S-J, Xu L, et al. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain. Cancer Res. 2015;75:554–65.

    Article  CAS  PubMed  Google Scholar 

  37. Parida PK, Marquez-Palencia M, Nair V, Kaushik AK, Kim K, Sudderth J, et al. Metabolic diversity within breast cancer brain-tropic cells determines metastatic fitness. Cell Metab. 2022;34:90–105.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeng Q, Michael IP, Zhang P, Saghafinia S, Knott G, Jiao W, et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature. 2019;573:526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65:1–105.

    Article  CAS  PubMed  Google Scholar 

  40. Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, et al. Blockage of Ca2+-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med. 2002;8:971–8.

    Article  CAS  PubMed  Google Scholar 

  41. D’Onofrio M, Arcella A, Bruno V, Ngomba RT, Battaglia G, Lombari V, et al. Pharmacological blockade of mGlu2/3 metabotropic glutamate receptors reduces cell proliferation in cultured human glioma cells. J Neurochem. 2003;84:1288–95.

    Article  PubMed  Google Scholar 

  42. Ngo B, Kim E, Osorio-Vasquez V, Doll S, Bustraan S, Liang RJ, et al. Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH Inhibition. Cancer Discov. 2020;10:1352–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12:6243s–9s.

    Article  PubMed  Google Scholar 

  44. Maurizi A, Rucci N. The osteoclast in bone metastasis: player and target. Cancers. 2018;10:218.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004;350:1655–64.

    Article  CAS  PubMed  Google Scholar 

  46. Esposito M, Guise T, Kang Y. The biology of bone metastasis. Cold Spring Harb Perspect Med. 2018;8:a031252.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ye L, Kynaston H, Jiang W. Bone metastasis in prostate cancer: molecular and cellular mechanisms (Review). Int J Mol Med. 2007. https://doi.org/10.3892/ijmm.20.1.103.

  48. Shen L, Sharma D, Yu Y, Long F, Karner C. Biphasic regulation of glutamine consumption by WNT during osteoblast differentiation. J Cell Sci. 2020;134:jcs.251645.

    Article  Google Scholar 

  49. Yu Y, Newman H, Shen L, Sharma D, Hu G, Mirando AJ, et al. Glutamine metabolism regulates proliferation and lineage allocation in skeletal stem cells. Cell Metab. 2019;29:966–978.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shen L, Yu Y, Zhou Y, Pruett-Miller SM, Zhang G-F, Karner CM. SLC38A2 provides proline to fulfill unique synthetic demands arising during osteoblast differentiation and bone formation. eLife. 2022;11:e76963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, Patterson AR, et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature. 2021;593:282–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Edwards DN, Ngwa VM, Raybuck AL, Wang S, Hwang Y, Kim LC, et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J Clin Investig. 2021;131:e140100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Edwards DN. Amino acid metabolism in bone metastatic disease. Curr Osteoporos Rep. 2023;21:344–53.

    Article  PubMed  Google Scholar 

  54. Indo Y, Takeshita S, Ishii K-A, Hoshii T, Aburatani H, Hirao A, et al. Metabolic regulation of osteoclast differentiation and function: metabolic signature of osteoclasts. J Bone Min Res. 2013;28:2392–9.

    Article  CAS  Google Scholar 

  55. Lee S, Kim HS, Kim MJ, Min KY, Choi WS, You JS. Glutamine metabolite α-ketoglutarate acts as an epigenetic co-factor to interfere with osteoclast differentiation. Bone. 2021;145:115836.

    Article  CAS  PubMed  Google Scholar 

  56. Go M, Shin E, Jang SY, Nam M, Hwang G-S, Lee SY. BCAT1 promotes osteoclast maturation by regulating branched-chain amino acid metabolism. Exp Mol Med. 2022;54:825–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brunner JS, Vulliard L, Hofmann M, Kieler M, Lercher A, Vogel A, et al. Environmental arginine controls multinuclear giant cell metabolism and formation. Nat Commun. 2020;11:431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nishikawa K, Iwamoto Y, Kobayashi Y, Katsuoka F, Kawaguchi S, Tsujita T, et al. DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine–producing metabolic pathway. Nat Med. 2015;21:281–7.

    Article  CAS  PubMed  Google Scholar 

  59. Pollari S, Käkönen S-M, Edgren H, Wolf M, Kohonen P, Sara H, et al. Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat. 2011;125:421–30.

    Article  CAS  PubMed  Google Scholar 

  60. Scalise M, Pochini L, Console L, Losso MA, Indiveri C. The human SLC1A5 (ASCT2) amino acid transporter: from function to structure and role in cell biology. Front Cell Dev Biol. 2018;6:96.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ogawa T, Ishida-Kitagawa N, Tanaka A, Matsumoto T, Hirouchi T, Akimaru M, et al. A novel role of l-serine (l-Ser) for the expression of nuclear factor of activated T cells (NFAT)2 in receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclastogenesis in vitro. J Bone Min Metab. 2006;24:373–9.

    Article  CAS  Google Scholar 

  62. Suvilesh KN, Manjunath Y, Pantel K, Kaifi JT. Preclinical models to study patient-derived circulating tumor cells and metastasis. Trends Cancer. 2023;9:355–71.

    Article  CAS  PubMed  Google Scholar 

  63. Rayes RF, Mouhanna JG, Nicolau I, Bourdeau F, Giannias B, Rousseau S, et al. Primary tumors induce neutrophil extracellular traps with targetable metastasis-promoting effects. JCI Insight. 2019;4:e128008.

    Article  PubMed Central  Google Scholar 

  64. Yang L, Liu Q, Zhang X, Liu X, Zhou B, Chen J, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature. 2020;583:133–8.

    Article  CAS  PubMed  Google Scholar 

  65. Naffah De Souza C, Breda LCD, Khan MA, Almeida SRD, Câmara NOS, Sweezey N, et al. Alkaline pH promotes NADPH oxidase-independent neutrophil extracellular trap formation: a matter of mitochondrial reactive oxygen species generation and citrullination and cleavage of histone. Front Immunol. 2018;8:1849.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell. 2013;24:130–7.

    Article  CAS  PubMed  Google Scholar 

  67. Woods LT, Forti KM, Shanbhag VC, Camden JM, Weisman GA. P2Y receptors for extracellular nucleotides: contributions to cancer progression and therapeutic implications. Biochem Pharm. 2021;187:114406.

    Article  CAS  PubMed  Google Scholar 

  68. Rinaldi G, Pranzini E, Van Elsen J, Broekaert D, Funk CM, Planque M, et al. In vivo evidence for serine biosynthesis-defined sensitivity of lung metastasis, but not of primary breast tumors, to mTORC1 inhibition. Mol Cell. 2021;81:386–97.e7.

    Article  CAS  PubMed  Google Scholar 

  69. Kiweler N, Delbrouck C, Pozdeev V, Neises L, Soriano-Baguet L, Eiden K, et al. Mitochondria preserve an autarkic one-carbon cycle to confer growth-independent cancer cell migration and metastasis. Nat Commun. 2022;13. https://doi.org/10.1038/s41467-022-30363-y.

  70. Elia I, Rossi M, Stegen S, Broekaert D, Doglioni G, van Gorsel M, et al. Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature. 2019;568:117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Oh M-H, Sun I-H, Zhao L, Leone RD, Sun I-M, Xu W, et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Clin Investig. 2020;130:3865–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alvarado A, Arce I. Metabolic functions of the lung, disorders and associated pathologies. J Clin Med Res. 2016;8:689–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lanzardo S, Conti L, Rooke R, Ruiu R, Accart N, Bolli E, et al. Immunotargeting of antigen xCT attenuates stem-like cell behavior and metastatic progression in breast cancer. Cancer Res. 2016;76:62–72.

    Article  CAS  PubMed  Google Scholar 

  74. Laoukili J, Van Schelven S, Küçükköse E, Verheem A, Goey K, Koopman M, et al. BRAFV600E in colorectal cancer reduces sensitivity to oxidative stress and promotes site-specific metastasis by stimulating glutathione synthesis. Cell Rep. 2022;41:111728.

    Article  CAS  PubMed  Google Scholar 

  75. Lee E, Choi A, Jun Y, Kim N, Yook JI, Kim SY, et al. Glutathione peroxidase-1 regulates adhesion and metastasis of triple-negative breast cancer cells via FAK signaling. Redox Biol. 2020;29:101391.

    Article  CAS  PubMed  Google Scholar 

  76. Li X, Sun X, Carmeliet P. Hallmarks of endothelial cell metabolism in health and disease. Cell Metab. 2019;30:414–33.

    Article  CAS  PubMed  Google Scholar 

  77. Ryan DG, O’Neill LAJ. Krebs cycle reborn in macrophage immunometabolism. Annu Rev Immunol. 2020;38:289–313.

    Article  CAS  PubMed  Google Scholar 

  78. Makowski L, Chaib M, Rathmell JC. Immunometabolism: from basic mechanisms to translation. Immunol Rev. 2020;295:5–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chang C-H, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162:1229–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ho P-C, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell. 2015;162:1217–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Leone RD, Powell JD. Metabolism of immune cells in cancer. Nat Rev Cancer. 2020;20:516–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Leone RD, Zhao L, Englert JM, Sun I-M, Oh M-H, Sun I-H, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bian Y, Li W, Kremer DM, Sajjakulnukit P, Li S, Crespo J, et al. Cancer SLC43A2 alters T cell methionine metabolism and histone methylation. Nature. 2020;585:277–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D. Arginine dependence of tumor cells: targeting a chink in cancer’s armor. Oncogene. 2016;35:4957–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li F, Simon MC. Cancer Cells Don’t Live Alone: Metabolic Communication Within Tumor Microenvironments. Dev Cell. 2020;54:183–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell. 2016;165:153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 2016;167:829–42.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ma EH, Bantug G, Griss T, Condotta S, Johnson RM, Samborska B, et al. Serine is an essential metabolite for effector T cell expansion. Cell Metab. 2017;25:345–57.

    Article  CAS  PubMed  Google Scholar 

  89. Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21:669–80.

    Article  PubMed  Google Scholar 

  90. Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281:1191–3.

    Article  CAS  PubMed  Google Scholar 

  92. Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189:1363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22:633–42.

    Article  CAS  PubMed  Google Scholar 

  94. Rothhammer V, Quintana FJ. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat Rev Immunol. 2019;19:184–97.

    Article  CAS  PubMed  Google Scholar 

  95. Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010;185:3190–8.

    Article  CAS  PubMed  Google Scholar 

  96. Mondanelli G, Ugel S, Grohmann U, Bronte V. The immune regulation in cancer by the amino acid metabolizing enzymes ARG and IDO. Curr Opin Pharm. 2017;35:30–39.

    Article  CAS  Google Scholar 

  97. Amobi-McCloud A, Muthuswamy R, Battaglia S, Yu H, Liu T, Wang J, et al. IDO1 expression in ovarian cancer induces PD-1 in T cells via aryl hydrocarbon receptor activation. Front Immunol. 2021;12:678999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu Y, Liang X, Dong W, Fang Y, Lv J, Zhang T, et al. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation. Cancer Cell. 2018;33:480–94.e7.

    Article  CAS  PubMed  Google Scholar 

  99. Shearer JD, Richards JR, Mills CD, Caldwell MD. Differential regulation of macrophage arginine metabolism: a proposed role in wound healing. Am J Physiol-Endocrinol Metab. 1997;272:E181–90.

    Article  CAS  Google Scholar 

  100. Ye C, Geng Z, Dominguez D, Chen S, Fan J, Qin L, et al. Targeting ornithine decarboxylase by α-difluoromethylornithine inhibits tumor growth by impairing myeloid-derived suppressor cells. J Immunol. 2016;196:915–23.

    Article  CAS  PubMed  Google Scholar 

  101. Mills CD, Shearer J, Evans R, Caldwell MD. Macrophage arginine metabolism and the inhibition or stimulation of cancer. J Immunol. 1992;149:2709–14.

    Article  CAS  PubMed  Google Scholar 

  102. Hayes CS, Shicora AC, Keough MP, Snook AE, Burns MR, Gilmour SK. Polyamine-blocking therapy reverses immunosuppression in the tumor microenvironment. Cancer Immunol Res. 2014;2:274–85.

    Article  CAS  PubMed  Google Scholar 

  103. Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, et al. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol. 2023;16:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zou W, Green DR. Beggars banquet: Metabolism in the tumor immune microenvironment and cancer therapy. Cell Metab. 2023;35:1101–13.

    Article  CAS  PubMed  Google Scholar 

  105. Kim G, Jang S-K, Kim YJ, Jin H-O, Bae S, Hong J, et al. Inhibition of glutamine uptake resensitizes paclitaxel resistance in SKOV3-TR ovarian cancer cell via mTORC1/S6K signaling pathway. Int J Mol Sci. 2022;23:8761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yokoyama Y, Estok TM, Wild R. Sirpiglenastat (DRP-104) induces antitumor efficacy through direct, broad antagonism of glutamine metabolism and stimulation of the innate and adaptive immune systems. Mol Cancer Ther. 2022;21:1561–72.

    Article  CAS  PubMed  Google Scholar 

  107. Rohde JM, Brimacombe KR, Liu L, Pacold ME, Yasgar A, Cheff DM, et al. Discovery and optimization of piperazine-1-thiourea-based human phosphoglycerate dehydrogenase inhibitors. Bioorg Med Chem. 2018;26:1727–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zheng J, Sato M, Mishima E, Sato H, Proneth B, Conrad M. Sorafenib fails to trigger ferroptosis across a wide range of cancer cell lines. Cell Death Dis. 2021;12:698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Reed JC, Pellecchia M. Ironing out cell death mechanisms. Cell. 2012;149:963–5.

    Article  CAS  PubMed  Google Scholar 

  110. Qiu F, Chen Y-R, Liu X, Chu C-Y, Shen L-J, Xu J et al. Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer Cells. Sci Signal. 2014; 7. https://doi.org/10.1126/scisignal.2004761.

  111. Stelter L, Fuchs S, Jungbluth AA, Ritter G, Longo VA, Zanzonico P, et al. Evaluation of arginine deiminase treatment in melanoma xenografts using 18F-FLT PET. Mol Imaging Biol. 2013;15:768–75.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Yao S, Janku F, Koenig K, Tsimberidou AM, Piha‐Paul SA, Shi N, et al. Phase 1 trial of ADI‐PEG 20 and liposomal doxorubicin in patients with metastatic solid tumors. Cancer Med. 2022;11:340–7.

    Article  CAS  PubMed  Google Scholar 

  113. Park HY, Kim M-J, Kim YJ, Lee S, Jin J, Lee S, et al. V-9302 inhibits proliferation and migration of VSMCs, and reduces neointima formation in mice after carotid artery ligation. Biochem Biophys Res Commun. 2021;560:45–51.

    Article  CAS  PubMed  Google Scholar 

  114. Adhikary G, Shrestha S, Naselsky W, Newland JJ, Chen X, Xu W, et al. Mesothelioma cancer cells are glutamine addicted and glutamine restriction reduces YAP1 signaling to attenuate tumor formation. Mol Carcinog. 2023;62:438–49.

    Article  CAS  PubMed  Google Scholar 

  115. Shen L, Zhang J, Zheng Z, Yang F, Liu S, Wu Y, et al. PHGDH inhibits ferroptosis and promotes malignant progression by upregulating SLC7A11 in bladder cancer. Int J Biol Sci. 2022;18:5459–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01 CA250506 and R01 CA266767 (to JC), T32 CA009592 (to BK); a VA Merit Award 5101BX000134 and a VA Senior Research Career Scientist Award IK6BX005391 (to JC); and a Department of Defense CDMRP Award W81XWH220109 (to DNE).

Author information

Authors and Affiliations

Authors

Contributions

All the authors determined collectively what topics and ideas should be included in the review. BK wrote the manuscript and DE and JC edited the manuscript.

Corresponding author

Correspondence to Jin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karno, B., Edwards, D.N. & Chen, J. Metabolic control of cancer metastasis: role of amino acids at secondary organ sites. Oncogene 42, 3447–3456 (2023). https://doi.org/10.1038/s41388-023-02868-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02868-3

Search

Quick links