Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

D-mannose induces TFE3-dependent lysosomal degradation of EGFR and inhibits the progression of NSCLC

Abstract

In non-small cell lung cancer (NSCLC), the overexpression or abnormal activation of epidermal growth factor receptor (EGFR) is associated with tumor progression and drug resistance. EGFR tyrosine kinase inhibitors (TKIs) are currently the first-line treatment of NSCLC. However, patients inevitably acquired EGFR TKIs resistance mutations, which led to disease progression, so it is urgent to find new treatment. Here, we report that D-mannose up-regulates lysosomal activity by enhancing TFE3-mediated lysosomal biogenesis, thereby increasing the degradation of EGFR and significantly down-regulating its protein level. Therefore, D-mannose significantly inhibited the proliferation, migration and invasion of wild-type EGFR (WT-EGFR) and EGFR mutant cells (E746-A750 deletion, L858R and T790M mutations) in vitro. Oral administration of D-mannose strongly inhibited tumor growth in mice, showing similar effects with osimertinib. Taken together, these data suggest that D-mannose may represent a new strategy for clinical treatment of NSCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of D-mannose as a new regulator of EGFR expression.
Fig. 2: D-mannose significantly down-regulates EGFR protein level.
Fig. 3: Lysosomal pathway contributes to D-mannose-mediated down-regulation of EGFR.
Fig. 4: D-mannose increases the biogenesis of lysosome and promotes the degradation of EGFR via lysosome.
Fig. 5: D-mannose inhibits the proliferation, migration and invasion of NSCLC cells in vitro.
Fig. 6: D-mannose significantly inhibits the growth of xenograft tumor in vivo.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available from the corresponding author (Lei Lv, lvlei@fudan.edu.cn) upon request.

References

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  2. Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358:1160–74.

    Article  CAS  PubMed  Google Scholar 

  3. Sporn MB, Todaro GJ. Autocrine secretion and malignant transformation of cells. N Engl J Med. 1980;303:878–80.

    Article  CAS  PubMed  Google Scholar 

  4. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol. 1995;19:183–232.

    Article  CAS  PubMed  Google Scholar 

  5. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol. 2006;7:505–16.

    Article  CAS  PubMed  Google Scholar 

  6. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5:341–54.

    Article  CAS  PubMed  Google Scholar 

  7. Mazzarella L, Guida A, Curigliano G. Cetuximab for treating non-small cell lung cancer. Expert Opin Biol Ther. 2018;18:483–93.

    Article  CAS  PubMed  Google Scholar 

  8. Ke EE, Wu YL. EGFR as a pharmacological target in EGFR-mutant non-small-cell lung cancer: where do we stand now? Trends Pharmacol Sci. 2016;37:887–903.

    Article  CAS  PubMed  Google Scholar 

  9. Cross DA, Ashton SE, Ghiorghiu S, Eberlein C, Nebhan CA, Spitzler PJ, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4:1046–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sharma V, Ichikawa M, Freeze HH. Mannose metabolism: more than meets the eye. Biochem Biophys Res Commun. 2014;453:220–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gonzalez PS, O’Prey J, Cardaci S, Barthet VJA, Sakamaki JI, Beaumatin F, et al. Mannose impairs tumour growth and enhances chemotherapy. Nature. 2018;563:719–23.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang R, Yang Y, Dong W, Lin M, He J, Zhang X, et al. D-mannose facilitates immunotherapy and radiotherapy of triple-negative breast cancer via degradation of PD-L1. Proc Natl Acad Sci USA. 2022;119:e2114851119.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Wang J, Jalali Motlagh N, Wang C, Wojtkiewicz GR, Schmidt S, Chau C. et al. d-mannose suppresses oxidative response and blocks phagocytosis in experimental neuroinflammation. Proc Natl Acad Sci USA. 2021;118:e2107663118.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Torretta S, Scagliola A, Ricci L, Mainini F, Di Marco S, Cuccovillo I, et al. D-mannose suppresses macrophage IL-1beta production. Nat Commun. 2020;11:6343.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhang D, Chia C, Jiao X, Jin W, Kasagi S, Wu R, et al. D-mannose induces regulatory T cells and suppresses immunopathology. Nat Med. 2017;23:1036–45.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Xie S, He B. Mannose shows antitumour properties against lung cancer via inhibiting proliferation, promoting cisplatin-mediated apoptosis and reducing metastasis. Mol Med Rep. 2020;22:2957–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Luo Q, Li B, Li G. Mannose suppresses the proliferation and metastasis of lung cancer by targeting the ERK/GSK-3β/β-catenin/SNAIL axis. OncoTargets Therapy. 2020;13:2771–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Yarden Y, Shilo BZ. SnapShot: EGFR signaling pathway. Cell. 2007;131:1018.

    Article  PubMed  Google Scholar 

  19. Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell. 2008;15:209–19.

    Article  CAS  PubMed  Google Scholar 

  20. Perera RM, Zoncu R. The lysosome as a regulatory hub. Annu Rev Cell Dev Biol. 2016;32:223–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Zhang N, Dou Y, Liu L, Zhang X, Liu X, Zeng Q, et al. SA-49, a novel aloperine derivative, induces MITF-dependent lysosomal degradation of PD-L1. EBioMedicine. 2019;40:151–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Puertollano R, Ferguson SM, Brugarolas J, Ballabio A. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J. 2018;37:e98804.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ploper D, Taelman VF, Robert L, Perez BS, Titz B, Chen HW, et al. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells. Proc Natl Acad Sci USA. 2015;112:E420–429.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Yin X, Wang B, Gan W, Zhuang W, Xiang Z, Han X, et al. TFE3 fusions escape from controlling of mTOR signaling pathway and accumulate in the nucleus promoting genes expression in Xp11.2 translocation renal cell carcinomas. J Exp Clin Cancer Res. 2019;38:119.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol. 2001;3:802–8.

    Article  CAS  PubMed  Google Scholar 

  26. Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH, Fidler IJ, et al. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell. 2008;13:385–93.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Kruspig B, Monteverde T, Neidler S, Hock A, Kerr E, Nixon C, et al. The ERBB network facilitates KRAS-driven lung tumorigenesis. Sci Transl Med.2018;10:eaao2565.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Nukaga S, Yasuda H, Tsuchihara K, Hamamoto J, Masuzawa K, Kawada I, et al. Amplification of EGFR Wild-Type Alleles in Non-Small Cell Lung Cancer Cells Confers Acquired Resistance to Mutation-Selective EGFR Tyrosine Kinase Inhibitors. Cancer Res. 2017;77:2078–89.

    Article  CAS  PubMed  Google Scholar 

  29. Moll HP, Pranz K, Musteanu M, Grabner B, Hruschka N, Mohrherr J, et al. Afatinib restrains K-RAS-driven lung tumorigenesis. Sci Transl Med. 2018;10:eaao2301.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Yu JJ, Zhou DD, Yang XX, Cui B, Tan FW, Wang J, et al. TRIB3-EGFR interaction promotes lung cancer progression and defines a therapeutic target. Nat Commun. 2020;11:3660.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature. 2015;517:302–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol. 2013;14:283–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Medina DL, Fraldi A, Bouche V, Annunziata F, Mansueto G, Spampanato C, et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell. 2011;21:421–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Xu H, Ren D. Lysosomal physiology. Annu Rev Physiol. 2015;77:57–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wang T, Zhang J, Wang S, Sun X, Wang D, Gao Y, et al. The exon 19-deleted EGFR undergoes ubiquitylation-mediated endocytic degradation via dynamin activity-dependent and -independent mechanisms. Cell Commun Signal. 2018;16:40.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 2011;20:3852–66.

    Article  CAS  PubMed  Google Scholar 

  37. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, et al. A gene network regulating lysosomal biogenesis and function. Science. 2009;325:473–7.

    Article  CAS  PubMed  Google Scholar 

  38. Mauri V, Lotfi P, Segatori L, Sardiello M. A rapid and sensitive method for measuring N-acetylglucosaminidase activity in cultured cells. PLoS One. 2013;8:e68060.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to members of LL laboratory for discussion throughout this study. This work was supported by the National Key R&D Program of China (2020YFA0803400/2020YFA0803402, 2022YFA0807100), the National Natural Science Foundation of China (82172936, 81972620, 82121004, 82372754, 82073128 and 32000918), Shanghai Natural Science Foundation (General Program, No. 20ZR1461900), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and the Fundamental Research Funds for the Central Universities, “Cross” Research Fund Project of the Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (JYJC202207).

Author information

Authors and Affiliations

Authors

Contributions

XS played major roles in designing and doing the experiments, analyzing the results and organizing the figures; YD, JH, HL, XY and WD helped to conduct the experiments; XX, MW, YX and LL conceived and designed the study; LL supervised the study; and XS and LL wrote the manuscript.

Corresponding authors

Correspondence to Xiao Xie, Mingsong Wang, Yanping Xu or Lei Lv.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Dai, Y., He, J. et al. D-mannose induces TFE3-dependent lysosomal degradation of EGFR and inhibits the progression of NSCLC. Oncogene 42, 3503–3513 (2023). https://doi.org/10.1038/s41388-023-02856-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02856-7

Search

Quick links