Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The ASH1L-AS1-ASH1L axis controls NME1-mediated activation of the RAS signaling in gastric cancer

Abstract

Gastric cancer (GC) is one of the most leading cause of malignancies. However, the molecular mechanisms underlying stomach carcinogenesis remain incompletely understood. Dysregulated genetic and epigenetic alternations significantly contribute to GC development. Here, we report that ASH1L and its antisense lncRNA ASH1L-AS1, which are transcribed from the most significant GC-risk signal at 1q22, act as novel oncogenes. The high levels of ASH1L or lncRNA ASH1L-AS1 expression in GC specimens are associated with worse prognosis of patients. In line with this, ASH1L and ASH1L-AS1 are functionally important in promoting GC disease progression. LncRNA ASH1L-AS1 up-regulates ASH1L transcription, increases histone methyltransferase ASH1L expression and elevates genome-wide H3K4me3 modification levels in GC cells. Furthermore, ASH1L-AS1 directly interacts with transcription factor NME1 protein to form the ASH1L-AS1-NME1 ribonucleoprotein, which transcriptionally promotes expression of ASH1L, ASH1L-AS1, KRAS and RAF1, and activates the RAS signaling pathway in GC cells. Taken together, our data demonstrated that the ASH1L-AS1-ASH1L regulatory axis controls histone modification reprogram and activation of the RAS signaling in cancers. Thus, ASH1L-AS1 might be a novel targets of GC therapeutics and diagnosis in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The increased levels of ASH1L and ASH1L-AS1 in GC tissues and the oncogenic role of ASH1L during cancer development.
Fig. 2: LncRNA ASH1L-AS1 promoted the malignant phenotypes of GC cells in vitro and in vivo.
Fig. 3: LncRNA ASH1L-AS1 interacted with onco-protein NME1 and prompted NME1 nucleus detention.
Fig. 4: NME1 acted as a crucial TF to promote expression of ASH1L-AS1 and ASH1L.
Fig. 5: ASH1L-AS1 elevated expression of KRAS and RAF1 and activated the RAS signaling pathway in GC cells.
Fig. 6: Graphical representation of the regulation and functions of lncRNA ASH1L-AS1 in GC.

Similar content being viewed by others

Data availability

The primary datasets generated in this study are available in Genome Sequence Archive-human HRA003621 (https://ngdc.cncb.ac.cn/gsa-human/).

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396:635–48.

    Article  CAS  PubMed  Google Scholar 

  3. Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. CA Cancer J Clin. 2021;71:264–79.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 2018;24:1449–58.

    Article  CAS  PubMed  Google Scholar 

  5. Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol. 2020;18:534–42.

    Article  PubMed  Google Scholar 

  6. Yeoh KG, Tan P. Mapping the genomic diaspora of gastric cancer. Nat Rev Cancer. 2022;22:71–84.

    Article  CAS  PubMed  Google Scholar 

  7. Padmanabhan N, Ushijima T, Tan P. How to stomach an epigenetic insult: the gastric cancer epigenome. Nat Rev Gastroenterol Hepatol. 2017;14:467–78.

    Article  PubMed  Google Scholar 

  8. Zheng Y, Lei T, Jin G, Guo H, Zhang N, Chai J, et al. LncPSCA in the 8q24.3 risk locus drives gastric cancer through destabilizing DDX5. EMBO Rep. 2021;22:e52707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang H, Ma RR, Zhang G, Dong Y, Duan M, Sun Y, et al. Long noncoding RNA lnc-LEMGC combines with DNA-PKcs to suppress gastric cancer metastasis. Cancer Lett. 2022;524:82–90.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou M, Dong J, Huang J, Ye W, Zheng Z, Huang K, et al. Chitosan-gelatin-EGCG nanoparticle-meditated LncRNA TMEM44-AS1 silencing to activate the P53 signaling pathway for the synergistic reversal of 5-FU resistance in gastric cancer. Adv Sci. 2022;9:e2105077.

    Article  Google Scholar 

  11. Li ZY, Xie Y, Deng M, Zhu L, Wu X, Li G, et al. c-Myc-activated intronic miR-210 and lncRNA MIR210HG synergistically promote the metastasis of gastric cancer. Cancer Lett. 2022;526:322–34.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang N, Wang B, Ma C, Zeng J, Wang T, Han L, et al. LINC00240 in the 6p22.1 risk locus promotes gastric cancer progression through USP10-mediated DDX21 stabilization. J Exp Clin Cancer Res. 2023;42:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu F, Peng Y, Chang S, Luo X, Yuan Y, Zhu X, et al. Vimentin binds to a novel tumor suppressor protein, GSPT1-238aa, encoded by circGSPT1 with a selective encoding priority to halt autophagy in gastric carcinoma. Cancer Lett. 2022;545:215826.

    Article  CAS  PubMed  Google Scholar 

  14. Dai T, Zhang X, Zhou X, Hu X, Huang X, Xing F, et al. Long non-coding RNA VAL facilitates PKM2 enzymatic activity to promote glycolysis and malignancy of gastric cancer. Clin Transl Med. 2022;12:e1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang S, Wo L, Zhang Z, Zhu C, Wang C, Wang Y, et al. Delivery of LINC00589 via mesoporous silica nanoparticles inhibits peritoneal metastasis in gastric cancer. Cancer Lett. 2022;549:215916.

    Article  CAS  PubMed  Google Scholar 

  16. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen X, Xie R, Gu P, Huang M, Han J, Dong W, et al. Long noncoding RNA LBCS inhibits self-renewal and chemoresistance of bladder cancer stem cells through epigenetic silencing of SOX2. Clin Cancer Res. 2019;25:1389–403.

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Liu X, Cui X, Tan Y, Wang Q, Wang Y, et al. LncRNA PRADX-mediated recruitment of PRC2/DDX5 complex suppresses UBXN1 expression and activates NF-kappaB activity, promoting tumorigenesis. Theranostics. 2021;11:4516–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Saeki N, Saito A, Choi IJ, Matsuo K, Ohnami S, Totsuka H, et al. A functional single nucleotide polymorphism in mucin 1, at chromosome 1q22, determines susceptibility to diffuse-type gastric cancer. Gastroenterology. 2011;140:892–902.

    Article  CAS  PubMed  Google Scholar 

  20. Shi Y, Hu Z, Wu C, Dai J, Li H, Dong J, et al. A genome-wide association study identifies new susceptibility loci for non-cardia gastric cancer at 3q13.31 and 5p13.1. Nat Genet. 2011;43:1215–8.

    Article  CAS  PubMed  Google Scholar 

  21. Hu N, Wang Z, Song X, Wei L, Kim BS, Freedman ND, et al. Genome-wide association study of gastric adenocarcinoma in Asia: a comparison of associations between cardia and non-cardia tumours. Gut. 2016;65:1611–8.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z, Dai J, Hu N, Miao X, Abnet CC, Yang M, et al. Identification of new susceptibility loci for gastric non-cardia adenocarcinoma: pooled results from two Chinese genome-wide association studies. Gut. 2017;66:581–7.

    Article  CAS  PubMed  Google Scholar 

  23. Tanikawa C, Kamatani Y, Toyoshima O, Sakamoto H, Ito H, Takahashi A, et al. Genome-wide association study identifies gastric cancer susceptibility loci at 12q24.11-12 and 20q11.21. Cancer Sci. 2018;109:4015–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin G, Lv J, Yang M, Wang M, Zhu M, Wang T, et al. Genetic risk, incident gastric cancer, and healthy lifestyle: a meta-analysis of genome-wide association studies and prospective cohort study. Lancet Oncol. 2020;21:1378–86.

    Article  CAS  PubMed  Google Scholar 

  25. Desvignes T, Pontarotti P, Fauvel C, Bobe J. Nme protein family evolutionary history, a vertebrate perspective. BMC Evol Biol. 2009;9:256.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA, et al. Evidence for a novel gene associated with low tumor metastatic potential. J Natl Cancer Inst. 1988;80:200–4.

    Article  CAS  PubMed  Google Scholar 

  27. Curtis CD, Likhite VS, McLeod IX, Yates JR, Nardulli AM. Interaction of the tumor metastasis suppressor nonmetastatic protein 23 homologue H1 and estrogen receptor alpha alters estrogen-responsive gene expression. Cancer Res. 2007;67:10600–7.

    Article  CAS  PubMed  Google Scholar 

  28. Cervoni L, Egistelli L, Eufemi M, Scotto d’Abusco A, Altieri F, Lascu I, et al. DNA sequences acting as binding sites for NM23/NDPK proteins in melanoma M14 cells. J Cell Biochem. 2006;98:421–8.

    Article  CAS  PubMed  Google Scholar 

  29. Choudhuri T, Verma SC, Lan K, Robertson ES. Expression of alpha V integrin is modulated by Epstein-Barr virus nuclear antigen 3C and the metastasis suppressor Nm23-H1 through interaction with the GATA-1 and Sp1 transcription factors. Virology. 2006;351:58–72.

    Article  CAS  PubMed  Google Scholar 

  30. Osada H, Tomida S, Yatabe Y, Tatematsu Y, Takeuchi T, Murakami H, et al. Roles of achaete-scute homologue 1 in DKK1 and E-cadherin repression and neuroendocrine differentiation in lung cancer. Cancer Res. 2008;68:1647–55.

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, Lee W, Jiang Z, Chen Z, Jhunjhunwala S, Haverty PM, et al. Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Res. 2012;22:2315–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song Y, Li L, Ou Y, Gao Z, Li E, Li X, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509:91–95.

    Article  CAS  PubMed  Google Scholar 

  33. Mouradov D, Sloggett C, Jorissen RN, Love CG, Li S, Burgess AW, et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 2014;74:3238–47.

    Article  CAS  PubMed  Google Scholar 

  34. Shen Y, Zhang N, Chai J, Wang T, Ma C, Han L, et al. CircPDIA4 induces gastric cancer progression by promoting ERK1/2 activation and enhancing biogenesis of oncogenic circRNAs. Cancer Res. 2023;83:538–52.

    Article  CAS  PubMed  Google Scholar 

  35. Sang L, Ju HQ, Yang Z, Ge Q, Zhang Z, Liu F, et al. Mitochondrial long non-coding RNA GAS5 tunes TCA metabolism in response to nutrient stress. Nat Metab. 2021;3:90–106.

    Article  CAS  PubMed  Google Scholar 

  36. Toki N, Takahashi H, Sharma H, Valentine MNZ, Rahman FM, Zucchelli S, et al. SINEUP long non-coding RNA acts via PTBP1 and HNRNPK to promote translational initiation assemblies. Nucleic Acids Res. 2020;48:11626–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mitra S, Muralidharan SV, Di Marco M, Juvvuna PK, Kosalai ST, Reischl S, et al. Subcellular distribution of p53 by the p53-responsive lncRNA NBAT1 determines chemotherapeutic response in neuroblastoma. Cancer Res. 2021;81:1457–71.

    Article  CAS  PubMed  Google Scholar 

  38. Lu C, Liu Z, Klement JD, Yang D, Merting AD, Poschel D et al. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer. 2021;9:e002624.

  39. Yu J, Zheng W. An alternative method for screening gastric cancer based on serum levels of CEA, CA19-9, and CA72-4. J Gastrointest Cancer. 2018;49:57–62.

    Article  CAS  PubMed  Google Scholar 

  40. Gregory GD, Vakoc CR, Rozovskaia T, Zheng X, Patel S, Nakamura T, et al. Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol. 2007;27:8466–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qin L, Williams JB, Tan T, Liu T, Cao Q, Ma K, et al. Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures. Nat Commun. 2021;12:6589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brinkmeier ML, Geister KA, Jones M, Waqas M, Maillard I, Camper SA. The histone methyltransferase gene absent, small, or homeotic discs-1 like is required for normal hox gene expression and fertility in mice. Biol Reprod. 2015;93:121.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM. Long non-coding RNAs as a source of new peptides. Elife. 2014;3:e03523.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, et al. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015;160:595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sousa ME, Farkas MH. Micropeptide. PLoS Genet. 2018;14:e1007764.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sun L, Wang W, Han C, Huang W, Sun Y, Fang K, et al. The oncomicropeptide APPLE promotes hematopoietic malignancy by enhancing translation initiation. Mol Cell. 2021;81:4493–4508.e4499.

    Article  CAS  PubMed  Google Scholar 

  47. Liu J, Zhang N, Zeng J, Wang T, Shen Y, Ma C, et al. N(6) -methyladenosine-modified lncRNA ARHGAP5-AS1 stabilises CSDE1 and coordinates oncogenic RNA regulons in hepatocellular carcinoma. Clin Transl Med. 2022;12:e1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (82372760, 82173070 and 82103291); Natural Science Foundation of Shandong Province (ZR2021LZL004 and ZR202102250889); Major Scientific and Technological Innovation Project of Shandong Province (2021ZDSYS04); Taishan Scholars Program of Shandong Province (tsqn202211340 and tstp20221141); Program of Science and Technology for the youth innovation team in universities of Shandong Province (2020KJL001 and 2022KJ316). The authors would like to thank the many individuals who participated in the study. The authors have no conflicts of interest to disclose.

Funding

This work was supported by the National Natural Science Foundation of China (82372760, 82173070 and 82103291); Natural Science Foundation of Shandong Province (ZR2021LZL004 and ZR202102250889); Major Scientific and Technological Innovation Project of Shandong Province (2021ZDSYS04); Taishan Scholars Program of Shandong Province (tsqn202211340 and tstp20221141); Program of Science and Technology for the youth innovation team in universities of Shandong Province (2020KJL001 and 2022KJ316).

Author information

Authors and Affiliations

Authors

Contributions

NZ conceived the project and supervised all experiments. NZ and MY designed the project. MX and LZ performed the experiments. MY, NZ, MX and LZ analyzed the data. LZ, LHan, LHuang and YH collected the human samples. MY, NZ, and LZ drafted the manuscript. MY and NZ critically revised the manuscript for important intellectual content. NZ supervised this study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nasha Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Zhang, L., Han, L. et al. The ASH1L-AS1-ASH1L axis controls NME1-mediated activation of the RAS signaling in gastric cancer. Oncogene 42, 3435–3445 (2023). https://doi.org/10.1038/s41388-023-02855-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02855-8

Search

Quick links