Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HMGB1/SET/HAT1 complex-mediated SASH1 repression drives glycolysis and metastasis in lung adenocarcinoma

Abstract

High-mobility group box 1 (HMGB1) can enhance the stability and accessibility of nucleus binding sites to nucleosomes and transcription factors. Recently, HMGB1 has been recognized as a positive regulator of tumor glutamine, and its overexpression has been correlated with tumorigenesis and cancer progression. However, functions and mechanisms of HMGB1 in regulation of glycolysis during cancer progression in lung adenocarcinoma (LUAD) is still unclear. Here, we found that intracellular HMGB1 was consistently upregulated in LUAD specimens, and positively relevant to tumor grade and poor survival. HMGB1 facilitated glycolysis and promoted metastasis through physical interaction with SET and HAT1, forming HMGB1/SET/HAT1 complex that inhibited H3K9 and H3K27 acetylation in LUAD. The functional proteins complex coordinated histone modification to suppress the expression of SASH1, thus further facilitating glycolysis and inducing the metastasis in vitro and in vivo. Consistent with this, the expression of SASH1 was negatively correlated with HMGB1, SET and GLUT1, and positively correlated with HAT1 in human LUAD specimens. Clinically, LUAD patients with high expression of HMGB1 and low expression of SASH1 exhibited the worst clinical outcomes. Overall, the findings of this study revealed the critical role of HMGB1 in glycolysis and metastasis by attenuating H3K9ace and H3K27ace through physical interacted with SET and HAT1, which may facilitate future targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HMGB1 facilitates glycolysis and correlates with poor prognosis in LUAD.
Fig. 2: Characterization of the HMGB1/SET/HAT1 complex.
Fig. 3: HMGB1/SET/HAT1 complex affects glycolysis by regulating H3K9ace and H3K27ace.
Fig. 4: HMGB1/SET/HAT1 acetylation complex transcriptional regulatory targets affects glycolysis.
Fig. 5: HMGB1/SET/HAT1 complex transcriptionally regulating SASH1 depends on the H3K9ace and H3K27ace mark.
Fig. 6: HMGB1/SET/HAT1 complex regulates glycolysis to promote metastasis of LUAD in vitro.
Fig. 7: HMGB1/SET/HAT1 complex regulates glycolysis to promote metastasis of LUAD in vivo.
Fig. 8: SASH1 expression is associated with HMGB1 expression in human LUAD specimens.

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Cui X, Han D, Heuvelmans M, Du Y, Zhao Y, Zhang L, et al. Clinical characteristics and work-up of small to intermediate-sized pulmonary nodules in a Chinese dedicated cancer hospital. Cancer Biol Med. 2020;17:199–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Popper HH. Progression and metastasis of lung cancer. Cancer Metastasis Rev. 2016;35:75–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen P-H, Cai L, Huffman K, Yang C, Kim J, Faubert B, et al. Metabolic diversity in human non-small cell lung cancer cells. Mol Cell. 2019;76:838–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perlikos F, Harrington KJ, Syrigos KN. Key molecular mechanisms in lung cancer invasion and metastasis: a comprehensive review. Crit Rev Oncol Hematol. 2013;87:1–11.

    Article  PubMed  Google Scholar 

  5. Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168:657–69.

    Article  PubMed Central  Google Scholar 

  6. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Johnson C, Warmoes MO, Shen X, Locasale JW. Epigenetics and cancer metabolism. Cancer Lett. 2015;356:309–14.

    Article  CAS  PubMed  Google Scholar 

  8. Salminen A, Kauppinen A, Kaarniranta K. AMPK/Snf1 signaling regulates histone acetylation: Impact on gene expression and epigenetic functions. Cell Signal. 2016;28:887–95.

    Article  CAS  PubMed  Google Scholar 

  9. Corbet C, Pinto A, Martherus R, Santiago de Jesus JP, Polet F, Feron O. Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab. 2016;24:311–23.

    Article  CAS  PubMed  Google Scholar 

  10. Bi L, Ren Y, Feng M, Meng P, Wang Q, Chen W, et al. HDAC11 regulates glycolysis through the LKB1/AMPK signaling pathway to maintain hepatocellular carcinoma stemness. Cancer Res. 2021;81:2015–28.

    Article  CAS  PubMed  Google Scholar 

  11. Dai X, Lv X, Thompson EW, Ostrikov KK. Histone lactylation: epigenetic mark of glycolytic switch. Trends Genet. 2022;38:124–7.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010;327:1000–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li F-L, Liu J-P, Bao R-X, Yan G, Feng X, Xu Y-P, et al. Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 2018;9:508.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, et al. HMGB1 in health and disease. Mol Aspects Med. 2014;40:1–116.

    Article  CAS  PubMed  Google Scholar 

  15. Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol. 2018;38:40–48.

    Article  CAS  PubMed  Google Scholar 

  16. Wu L, Yang L. The function and mechanism of HMGB1 in lung cancer and its potential therapeutic implications. Oncol Lett. 2018;15:6799–805.

    PubMed  PubMed Central  Google Scholar 

  17. Wei Y, Tang X, Ren Y, Yang Y, Song F, Fu J, et al. An RNA-RNA crosstalk network involving HMGB1 and RICTOR facilitates hepatocellular carcinoma tumorigenesis by promoting glutamine metabolism and impedes immunotherapy by PD-L1+ exosomes activity. Signal Transduct Target Ther. 2021;6:421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang S, Zhang Y. HMGB1 in inflammation and cancer. J Hematol Oncol. 2020;13:116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yuan S, Liu Z, Xu Z, Liu J, Zhang J. High mobility group box 1 (HMGB1): a pivotal regulator of hematopoietic malignancies. J Hematol Oncol. 2020;13:91.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lu W, Chen Z, Ren X, Liu W, Deng R, Yuan J, et al. SET promotes H2Ak9 acetylation by suppressing HDAC1 in trichloroethylene-induced hepatic cytotoxicity. Environ Toxicol Pharm. 2018;59:125–31.

    Article  CAS  Google Scholar 

  21. Saavedra F, Rivera C, Rivas E, Merino P, Garrido D, Hernández S, et al. PP32 and SET/TAF-Iβ proteins regulate the acetylation of newly synthesized histone H4. Nucleic Acids Res. 2017;45:11700–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seo SB, McNamara P, Heo S, Turner A, Lane WS, Chakravarti D. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell. 2001;104:119–30.

    Article  CAS  PubMed  Google Scholar 

  23. Nehil M, Paquette J, Tokuyasu T, McCormick F. High mobility group box 1 promotes tumor cell migration through epigenetic silencing of semaphorin 3A. Oncogene. 2014;33:5151–62.

    Article  CAS  PubMed  Google Scholar 

  24. Yang X, Li L, Liang J, Shi L, Yang J, Yi X, et al. Histone acetyltransferase 1 promotes homologous recombination in DNA repair by facilitating histone turnover. J Biol Chem. 2013;288:18271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy. Pharmacol Res. 2019;150:104511.

    Article  CAS  PubMed  Google Scholar 

  26. Li X, Egervari G, Wang Y, Berger SL, Lu Z. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat Rev Mol Cell Biol. 2018;19:563–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clapier CR, Iwasa J, Cairns BR, Peterson CL. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 2017;18:407–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morrison AJ. Chromatin-remodeling links metabolic signaling to gene expression. Mol Metab. 2020;38:100973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ren Y, Cao L, Wang L, Zheng S, Zhang Q, Guo X, et al. Autophagic secretion of HMGB1 from cancer-associated fibroblasts promotes metastatic potential of non-small cell lung cancer cells via NFκB signaling. Cell Death Dis. 2021;12:858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao Q, Wang S, Chen X, Cheng S, Zhang Z, Li F, et al. Cancer-cell-secreted CXCL11 promoted CD8 T cells infiltration through docetaxel-induced-release of HMGB1 in NSCLC. J Immunother Cancer. 2019;7:42.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wu X, Chen Y, Guo W, Li T, Dong H, Wang W, et al. HMGB1 regulates SNAI1 during NSCLC metastasis, both directly, through transcriptional activation, and indirectly, in a RSF1-IT2-dependent manner. Mol Oncol. 2020;14:1348–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barreiro-Alonso A, Lamas-Maceiras M, Lorenzo-Catoira L, Pardo M, Yu L, Choudhary JS, et al. HMGB1 protein interactions in prostate and ovary cancer models reveal links to RNA processing and ribosome biogenesis through NuRD, THOC and septin complexes. Cancers. 2021;13:4686.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fan Z, Beresford PJ, Oh DY, Zhang D, Lieberman J. Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell. 2003;112:659–72.

    Article  CAS  PubMed  Google Scholar 

  34. Gruber JJ, Geller B, Lipchik AM, Chen J, Salahudeen AA, Ram AN, et al. HAT1 coordinates histone production and acetylation via H4 promoter binding. Mol Cell. 2019;75:711–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parthun MR. Hat1: the emerging cellular roles of a type B histone acetyltransferase. Oncogene. 2007;26:5319–28.

    Article  CAS  PubMed  Google Scholar 

  36. Comet I, Riising EM, Leblanc B, Helin K. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat Rev Cancer. 2016;16:803–10.

    Article  CAS  PubMed  Google Scholar 

  37. Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell. 2005;122:517–27.

    Article  CAS  PubMed  Google Scholar 

  38. Burgess JT, Bolderson E, Adams MN, Duijf PHG, Zhang S-D, Gray SG, et al. SASH1 is a prognostic indicator and potential therapeutic target in non-small cell lung cancer. Sci Rep. 2020;10:18605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu L, Kou F, Ji Z, Li B, Zhang B, Guo Y, et al. SMYD2 promotes tumorigenesis and metastasis of lung adenocarcinoma through RPS7. Cell Death Dis. 2021;12:439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kou F, Wu L, Guo Y, Zhang B, Li B, Huang Z, et al. Somatic copy number alterations are predictive of progression-free survival in patients with lung adenocarcinoma undergoing radiotherapy. Cancer Biol Med. 2021;19:685–95.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Tianjin Medical University Cancer Institute and Hospital for providing tissues from patients with NSCLC. We acknowledge TopEdit LLC for the linguistic editing and proofreading during the preparation of this manuscript. This work was supported by grants from the National Natural Science Foundation of China (Grant No. 81974246), Tianjin Key Medical Discipline (Specialty) Construction Project (TJYXZDXK-009A), Tianjin Natural Science Fund (No. 22JCYBJC01050) and Tianjin Research Innovation Project for Postgraduate Students (Grant No. 2021YJSB263).

Author information

Authors and Affiliations

Authors

Contributions

FK, LW, and LY were responsible for designing the study. FK, LW, YZ, and ZJ conducted the research. FK and YY performed data analysis and wrote the manuscript. ZH and SG revised the manuscript.

Corresponding author

Correspondence to Lili Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Animal experiments were approved by the Animal Care Committee of Tianjin Medical University (No. 2021019).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kou, F., Wu, L., Zheng, Y. et al. HMGB1/SET/HAT1 complex-mediated SASH1 repression drives glycolysis and metastasis in lung adenocarcinoma. Oncogene 42, 3407–3421 (2023). https://doi.org/10.1038/s41388-023-02850-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02850-z

Search

Quick links